a) Với \(x>0\), ta có:
\(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)
\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1\)
\(P=x+\sqrt{x}-2\sqrt{x}\)
\(P=x-\sqrt{x}\)
b) Thay \(x=100\) (thoả mãn \(x>0\)) vào \(P\), ta có:
\(P=100-\sqrt{100}=100-10=90\)
c) Ta có: \(P=x-\sqrt{x}=x-2\sqrt{x}\cdot0,5+0,25-0,25=\left(\sqrt{x}-0,5\right)^2-0,25\)
Vì \(\left(\sqrt{x}-0,5\right)^2\ge0\forall x>0\)
\(\Rightarrow\left(\sqrt{x}-0,5\right)^2-0,25\ge-0,25\forall x>0\)
Vậy \(MIN_P=-0,25\Leftrightarrow\sqrt{x}-0,5=0\Leftrightarrow x=0,25\)