Lời giải:
Ta có:
$y'=2x+b$
Hoành độ đỉnh $I$ của parabol là nghiệm của PT $y'=0$
$\Leftrightarrow x_I=\frac{-b}{2}$
Tung độ của $I$: $y_I=x_I^2+bx_I+c=(\frac{-b}{2})^2+b.\frac{-b}{2}+c=c-\frac{b^2}{4}=-1(*)$
Mặt khác $(P)$ đi qua điểm $A(1,0)$ nên: \(y_A=x_A^2+bx_A+c\)
hay \(0=1+b+c(**)\)
Từ $(*); (**)\Rightarrow b=0$ hoặc $b=-4$
Nếu $b=0\rightarrow c=-1$
Nếu $b=-4\rightarrow c=3$
Vậy $(P): y=x^2-1$ hoặc $(P): y=x^2-4x+3$
Lời giải:
Ta có:
$y'=2x+b$
Hoành độ đỉnh $I$ của parabol là nghiệm của PT $y'=0$
$\Leftrightarrow x_I=\frac{-b}{2}$
Tung độ của $I$: $y_I=x_I^2+bx_I+c=(\frac{-b}{2})^2+b.\frac{-b}{2}+c=c-\frac{b^2}{4}=-1(*)$
Mặt khác $(P)$ đi qua điểm $A(1,0)$ nên: \(y_A=x_A^2+bx_A+c\)
hay \(0=1+b+c(**)\)
Từ $(*); (**)\Rightarrow b=0$ hoặc $b=-4$
Nếu $b=0\rightarrow c=-1$
Nếu $b=-4\rightarrow c=3$
Vậy $(P): y=x^2-1$ hoặc $(P): y=x^2-4x+3$