§3. Hàm số bậc hai

NN

(P): y= x2 +bx+c đi qua điểm A(1;0) và đỉnh I có tung độ bằng -1. Xác định parabol (P)

AH
30 tháng 12 2019 lúc 14:50

Lời giải:

Ta có:

$y'=2x+b$

Hoành độ đỉnh $I$ của parabol là nghiệm của PT $y'=0$

$\Leftrightarrow x_I=\frac{-b}{2}$

Tung độ của $I$: $y_I=x_I^2+bx_I+c=(\frac{-b}{2})^2+b.\frac{-b}{2}+c=c-\frac{b^2}{4}=-1(*)$

Mặt khác $(P)$ đi qua điểm $A(1,0)$ nên: \(y_A=x_A^2+bx_A+c\)

hay \(0=1+b+c(**)\)

Từ $(*); (**)\Rightarrow b=0$ hoặc $b=-4$

Nếu $b=0\rightarrow c=-1$

Nếu $b=-4\rightarrow c=3$

Vậy $(P): y=x^2-1$ hoặc $(P): y=x^2-4x+3$

Bình luận (0)
 Khách vãng lai đã xóa
AH
23 tháng 12 2019 lúc 10:44

Lời giải:

Ta có:

$y'=2x+b$

Hoành độ đỉnh $I$ của parabol là nghiệm của PT $y'=0$

$\Leftrightarrow x_I=\frac{-b}{2}$

Tung độ của $I$: $y_I=x_I^2+bx_I+c=(\frac{-b}{2})^2+b.\frac{-b}{2}+c=c-\frac{b^2}{4}=-1(*)$

Mặt khác $(P)$ đi qua điểm $A(1,0)$ nên: \(y_A=x_A^2+bx_A+c\)

hay \(0=1+b+c(**)\)

Từ $(*); (**)\Rightarrow b=0$ hoặc $b=-4$

Nếu $b=0\rightarrow c=-1$

Nếu $b=-4\rightarrow c=3$

Vậy $(P): y=x^2-1$ hoặc $(P): y=x^2-4x+3$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
2N
Xem chi tiết
PP
Xem chi tiết
H24
Xem chi tiết
21
Xem chi tiết
HT
Xem chi tiết
NN
Xem chi tiết
SK
Xem chi tiết
GH
Xem chi tiết
HM
Xem chi tiết