Ôn thi vào 10

TT

P =\(\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x^2+\sqrt{x}}{x\sqrt{x}+x}\)

a/ Rút gọn 

b/ Tính gtri biểu thức thi x=\(3-2\sqrt{2}\)

c/ chứng minh rằng với mội giá trị của x để biểu thức P có nghĩa thì biểu thức \(\dfrac{7}{P}\)chỉ nhận giá trị nguyên

NT
31 tháng 3 2021 lúc 19:15

a) Ta có: \(P=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x^2+\sqrt{x}}{x\sqrt{x}+x}\)

\(=\dfrac{2x+2}{\sqrt{x}}+\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
AQ
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết