Violympic toán 9

H24

nếu phương trình có nghiệm và đạt giá trị nhỏ nhất thì ?, biết

DA
17 tháng 3 2017 lúc 21:18

Dễ thấy x=0 không là nghiệm của phương trình.

Xét x khác 0, chia cả 2 vế của phương trình cho \(x^2\ne0\) ta có:

\(x^2+\text{ax}+b+\dfrac{a}{x}+\dfrac{1}{x^2}=0\)

<=> \(\left(x^2+\dfrac{1}{x^2}\right)+a\left(x+\dfrac{1}{x}\right)+b=0\)

<=>\(\left(x+\dfrac{1}{x}\right)^2-2+a\left(a+\dfrac{1}{x}\right)+b=0\)(*)

Đặt \(y=x+\dfrac{1}{x}\)

Ta có: \(y^2-4=\left(x+\dfrac{1}{x}\right)^2-4=x^2+2.x.\dfrac{1}{x}+\dfrac{1}{x^2}-4.x.\dfrac{1}{x}\)

=\(x^2-2.x.\dfrac{1}{x}+\dfrac{1}{x^2}=\left(x-\dfrac{1}{x}\right)^2\ge0\) với mọi x khác 0

=>\(y^2\ge4\)

=>\(\left|y\right|\ge2\)

(*) trở thành: y2-2+ay+b=0

<=>\(2-y^2=ay+b\)

=>\(\left|2-y^2\right|=\left|ay+b\right|\)(1)

Ta có: \(0\le\left(a-by\right)^2\) (với mọi \(a\ne0\) , b, \(\left|y\right|\ge2\))

<=>\(0\le a^2-2aby+b^2y^2\)

<=>\(a^2y^2+2aby+b^2\le a^2y^2+a^2+b^2y^2+b^2\)

<=>\(\left(ay+b\right)^2\le\left(a^2+b^2\right)\left(y^2+1\right)\)

<=>\(\left|ay+b\right|\le\sqrt{a^2+b^2}\sqrt{y^2+1}\)(2)

Từ (1) và (2) => \(\left|2-y^2\right|\le\sqrt{a^2+b^2}\sqrt{y^2+1}\)

<=>\(\left(2-y^2\right)^2\le\left(a^2+b^2\right)\left(y^2+1\right)\)

<=>\(\left(a^2+b^2\right)^2\ge\dfrac{\left(2-y^2\right)^2}{y^2+1}\)(3) (vì y2+1>0 với mọi \(\left|y\right|\ge2\))

\(y^2\ge4\)

=> \(y^2-\dfrac{12}{5}\ge4-\dfrac{12}{5}=\dfrac{8}{5}\) > 0

=> \(\left(y^2-\dfrac{12}{5}\right)^2\ge\left(\dfrac{8}{5}\right)^2\)

<=>\(y^4-\dfrac{24}{5}y^2+\dfrac{144}{25}\ge\dfrac{64}{25}\)

<=>\(y^4-\dfrac{24}{5}y^2+\dfrac{16}{5}\ge0\)

<=>\(5y^4-24y^2+16\ge0\)

<=>\(20-20y^2+5y^4\ge4y^2+4\)

<=>\(5\left(4-4y^2+y^4\right)\ge4\left(y^2+1\right)\)

<=>\(5\left(2-y^2\right)^2\ge4\left(y^2+1\right)\)

<=>\(\dfrac{\left(2-y^2\right)^2}{y^2+1}\ge\dfrac{4}{5}\) (4) (vì y2+1>0 với mọi \(\left|y\right|\ge2\))

Từ (3) và (4)=> \(a^2+b^2\ge\dfrac{4}{5}\)

Vậy giá trị nhỏ nhất của a2+b2\(\dfrac{4}{5}\) khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|y\right|=2\\a=by\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\\a=by\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\a=2b\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\a=-2b\end{matrix}\right.\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\a=-\dfrac{4}{5}\\b=\dfrac{-2}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\a=\dfrac{4}{5}\\b=\dfrac{-2}{5}\end{matrix}\right.\end{matrix}\right.\)(I)

Vì a > 0 nên trường hợp thứ nhất loại.

Do đó:\(\left(I\right)\)<=>\(\left\{{}\begin{matrix}x=-1\\a=\dfrac{4}{5}\\b=\dfrac{-2}{5}\end{matrix}\right.\)

Khi đó giá trị của a cần tìm là \(\dfrac{4}{5}.\)

Bình luận (4)
PL
17 tháng 3 2017 lúc 14:27

0,8

Bình luận (2)
DA
18 tháng 3 2017 lúc 18:07

Ở phần chứng minh \(\left|ay+b\right|\le\sqrt{a^2+b^2}\sqrt{y^2+1}\) trong lời giải của tôi các bạn có thể áp dụng bất đẳng thức B.C.S cho nhanh gọn hơn.

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
MH
Xem chi tiết
NL
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
DY
Xem chi tiết
NS
Xem chi tiết