Chương 4: GIỚI HẠN

NL

Mọi người giúp em mấy câu này với ạ!! Một vài câu cũng được mà làm hết thì càng tốt

NL
4 tháng 3 2022 lúc 21:54

4.

\(\lim\limits_{x\rightarrow8}f\left(x\right)=\lim\limits_{x\rightarrow8}\dfrac{\sqrt[3]{x}-2}{x-8}=\lim\limits_{x\rightarrow8}\dfrac{x-8}{\left(x-8\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}=\lim\limits_{x\rightarrow8}\dfrac{1}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}\)

\(=\dfrac{1}{4+4+4}=\dfrac{1}{12}\)

\(f\left(8\right)=3.8-20=4\)

\(\Rightarrow\lim\limits_{x\rightarrow8}f\left(x\right)\ne f\left(8\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=8\)

5.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{1+2x}-1+1-\sqrt[3]{1+3x}}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{2x}{\sqrt[]{1+2x}+1}-\dfrac{3x}{1+\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0^+}\left(\dfrac{2}{\sqrt[]{1+2x}+1}-\dfrac{3}{1+\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}\right)=\dfrac{2}{1+1}-\dfrac{3}{1+1+1}=0\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(3x^2-2x\right)=0\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)

\(\Rightarrow\) Hàm liên tục tại \(x=0\)

Bình luận (0)
NL
4 tháng 3 2022 lúc 21:59

6.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{4x+1}-\sqrt[3]{6x+1}}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{4x+1}-\left(2x+1\right)+\left(2x+1-\sqrt[3]{6x+1}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{-x^2}{\sqrt[]{4x+1}+2x+1}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\left(\dfrac{-1}{\sqrt[]{4x+1}+2x+1}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}\right)\)

\(=\dfrac{-1}{1+1}+\dfrac{12}{1+1+1}=\dfrac{7}{2}\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(2-3x\right)=2\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)\ne\lim\limits_{x\rightarrow0^-}f\left(x\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=0\)

Bình luận (0)
NL
4 tháng 3 2022 lúc 22:03

7.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{1+2x}-\left(x+1\right)+\left(x+1-\sqrt[3]{1+3x}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{-x^2}{\sqrt[]{1+2x}+x+1}+\dfrac{x^2\left(x+3\right)}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\left(\dfrac{-1}{\sqrt[]{1+2x}+x+1}+\dfrac{x+3}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}\right)\)

\(=\dfrac{-1}{1+1}+\dfrac{3}{1+1+1}=1\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(2x+3\right)=3\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)\ne\lim\limits_{x\rightarrow0^-}f\left(x\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=0\)

Bình luận (0)
NL
4 tháng 3 2022 lúc 22:15

9.

\(\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\left(\sqrt[]{1+x^2}+x\right)^4-\left(\sqrt[]{1+x^2}-x\right)^4}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\left[\left(\sqrt[]{1+x^2}+x\right)^2+\left(\sqrt[]{1+x^2}-x\right)^2\right]\left[\left(\sqrt[]{1+x^2}+x\right)^2-\left(\sqrt[]{1+x^2}-x\right)^2\right]}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\left[\left(\sqrt[]{1+x^2}+x\right)^2+\left(\sqrt[]{1+x^2}-x\right)^2\right].2\sqrt[]{1+x^2}.2x}{x}\)

\(=\lim\limits_{x\rightarrow0}4\sqrt[]{1+x^2}.\left[\left(\sqrt[]{1+x^2}+x\right)^2+\left(\sqrt[]{1+x^2}-x\right)^2\right]\)

\(=4.1.\left(1+1\right)=8\)

\(f\left(0\right)=3.0+8=8\)

\(\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\)

Hàm liên tục tại \(x=0\)

Bình luận (0)
NL
4 tháng 3 2022 lúc 22:16

8.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\left(1+2020x\right)^{2021}-\left(1+2021x\right)^{2020}}{2021x^2}\)

(Mũ quá to nên thêm bớt HĐT hoặc khai triển nhị thức Newton sẽ tạo ra 1 biểu thức phức tạp, do đó để đơn giản chúng ta sẽ sử dụng quy tắc L'Hopital để tính giới hạn)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{2020.2021\left(1+2020x\right)^{2020}-2020.2021\left(1+2021x\right)^{2019}}{2.2021x}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{2020\left(1+2020x\right)^{2020}-2020\left(1+2021x\right)^{2019}}{2x}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{2020^3\left(1+2020x\right)^{2019}-2019.2020.2021\left(1+2021x\right)^{2018}}{2}\)

\(=\dfrac{2020^3-2019.2020.2021}{2}=1010\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(x^2+1010\right)=1010\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)

\(\Rightarrow\)Hàm liên tục tại \(x=0\)

Bình luận (0)
NL
4 tháng 3 2022 lúc 22:21

Câu 8 ko để ý kĩ đề, sửa lại đoạn \(\lim\limits_{x\rightarrow0^+}...\) thành \(\lim\limits_{x\rightarrow0}...\) và \(\lim\limits_{x\rightarrow0^-}...\) thành \(f\left(0\right)\)

10.

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\left(\sqrt[]{x}-1\right)\left(\sqrt[3]{x}-1\right)\left(\sqrt[4]{x}-1\right)}{\left(x^2-1\right)^3}\)

\(=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{\left(x-1\right)}{\sqrt[]{x}+1}.\dfrac{x-1}{\sqrt[3]{x^2}+\sqrt[3]{x}+1}.\dfrac{x-1}{\left(\sqrt[4]{x}+1\right)\left(\sqrt[]{x}+1\right)}}{\left(x-1\right)^3\left(x+1\right)^3}\)

\(=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\left(x+1\right)^3\left(\sqrt[]{x}+1\right)\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)\left(\sqrt[4]{x}+1\right)\left(\sqrt[]{x}+1\right)}\)

\(=\dfrac{1}{2^3.2.3.2.2}=\dfrac{1}{192}\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(3-x\right)=2\)

\(\Rightarrow\lim\limits_{x\rightarrow1^+}f\left(x\right)\ne\lim\limits_{x\rightarrow1^-}f\left(x\right)\)

Hàm gián đoạn tại \(x=1\)

Bình luận (0)

Các câu hỏi tương tự
T1
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
DQ
Xem chi tiết
SD
Xem chi tiết
SD
Xem chi tiết
SD
Xem chi tiết
SD
Xem chi tiết
H24
Xem chi tiết