Tam giác đồng dạng

DC

Mọi người giúp em bài này với ạ

H24
22 tháng 6 2021 lúc 14:29

a) Xét \(\Delta ABH\) và \(\Delta AKC\) có:

\(\widehat{BAH}=\widehat{CAK}\left(gt\right)\)

\(\widehat{AHB}=\widehat{ACK}\left(=90^o\right)\)

=> \(\Delta ABH\sim\Delta AKC\left(g-g\right)\) abc

=> \(\dfrac{AB}{AK}=\dfrac{AH}{AC}\) (2 cặp cạch tương ứng)

=> AB.AC = AK.AH

b) Gọi I là giao điểm của BC và AK

Có \(\Delta ABH\sim\Delta AKC\)

=> \(\widehat{ABH}=\widehat{AKC}\) (2 góc tương ứng)

hay \(\widehat{ABI}=\widehat{IKC}\)

Xét \(\Delta ABI\) và \(\Delta CKI\) có:

\(\widehat{ABI}=\widehat{IKC}\)

\(\widehat{AIB}=\widehat{CIK}\) (2 góc đối đỉnh)

=> \(\Delta ABI\sim\Delta CKI\left(g-g\right)\)

=> \(\dfrac{AI}{CI}=\dfrac{BI}{KI}\) (2 cặp cạnh tương ứng)

Xét \(\Delta AIC\) và \(\Delta BIK\) có: 

\(+\dfrac{AI}{CI}=\dfrac{BI}{KI}\)

\(\widehat{AIC}=\widehat{BIK}\) (2 góc đối đỉnh)

=> \(\Delta AIC\sim\Delta BIK\left(c-g-c\right)\)

=> \(\widehat{IAC}=\widehat{IBK}\) (2 góc tương ứng)

=> \(\widehat{IBK}=\widehat{BAH}\)

Mà \(\widehat{BAH}+\widehat{ABH}=90^o\)

=> \(\widehat{ABH}+\widehat{IBK}=90^o=>\widehat{ABK}=90^o\)

Xét tứ giác ABKC có:

\(\widehat{ABK}+\widehat{ACK}+\widehat{BAC}+\widehat{BKC}=360^o\)

=> \(\widehat{BAC}+\widehat{BKC}=180^o\)

Bình luận (0)

Các câu hỏi tương tự
DC
Xem chi tiết
CH
Xem chi tiết
YH
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
NP
Xem chi tiết