Chương 6: CUNG VÀ GÓC LƯỢNG GIÁC. CÔNG THỨC LƯỢNG GIÁC

TN

mn cho e hỏi cách giải chi tiết câu này với ạ: 
Chứng minh rằng tam giác ABC vuông nếu sin^2A+sin^B+sin^2C=2

em cảm ơn ạ


 

NL
17 tháng 4 2022 lúc 17:06

\(sin^2A+sin^2B+sin^2C=2\)

\(\Leftrightarrow sin^2A+\dfrac{1-cos2B}{2}+\dfrac{1-cos2C}{2}=2\)

\(\Leftrightarrow sin^2A-\dfrac{1}{2}\left(cos2B+cos2C\right)=1\)

\(\Leftrightarrow1-cos^2A-cos\left(B+C\right)cos\left(B-C\right)=1\)

\(\Leftrightarrow cos^2A+cos\left(B+C\right)cos\left(B-C\right)=0\)

\(\Leftrightarrow cos^2A-cosA.cos\left(B-C\right)=0\)

\(\Leftrightarrow cosA\left[cosA-cos\left(B-C\right)\right]=0\)

\(\Leftrightarrow cosA.sin\left(\dfrac{A+B-C}{2}\right)sin\left(\dfrac{A+C-B}{2}\right)=0\)

\(\Leftrightarrow cosA.sin\left(90^0-C\right)sin\left(90^0-B\right)=0\)

\(\Leftrightarrow cosA.cosB.cosC=0\)

\(\Leftrightarrow\left[{}\begin{matrix}A=90^0\\B=90^0\\C=90^0\end{matrix}\right.\) hay tam giác ABC vuông

Bình luận (0)