Chương II - Đường tròn

NL

Mình chỉ cần câu c thôi ạ, không hình cũng được ạ. Mình cảm ơn

 

Cho A nằm ngoài (O;R) vẽ hai tiếp tuyến AB,AC.

a. chứng minh OA vuông góc BC.

b. vẽ đường kinh CD, AD cắt (O) tại N. chứng minh AH.AO= AN.AD 

c. giả sử OA=2R. tính giá trị chính xác sin(AHN)

NT
9 tháng 12 2023 lúc 13:35

a: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

b: Xét (O) có

ΔCND nội tiếp

CD là đường kính

Do đó: ΔCND vuông tại N

=>CN\(\perp\)ND tại N

=>CN\(\perp\)AD tại N

Xét ΔDCA vuông tại C có CN là đường cao

nên \(AN\cdot AD=AC^2\left(3\right)\)

Ta có: OA là trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOCA vuông tại C có CH là đường cao

nên \(AH\cdot AO=AC^2\left(4\right)\)

Từ (3) và (4) suy ra \(AN\cdot AD=AH\cdot AO\)

c: Ta có: \(AH\cdot AO=AN\cdot AD\)

=>\(\dfrac{AH}{AD}=\dfrac{AN}{AO}\)

Xét ΔAHN và ΔADO có

\(\dfrac{AH}{AD}=\dfrac{AN}{AO}\)

\(\widehat{HAN}\) chung

Do đó: ΔAHN đồng dạng với ΔADO

=>\(\widehat{AHN}=\widehat{ADO}\)

Ta có: ΔOCA vuông tại C

=>\(CO^2+CA^2=OA^2\)

=>\(CA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(CA=R\sqrt{3}\)

Ta có: ΔDCA vuông tại C

=>\(DC^2+CA^2=DA^2\)

=>\(DA^2=\left(2R\right)^2+\left(R\sqrt{3}\right)^2=7R^2\)

=>\(DA=R\sqrt{7}\)

Xét ΔDCA vuông tại C có \(sinCDA=\dfrac{CA}{DA}\)

=>\(sinCDA=\dfrac{R\sqrt{3}}{R\sqrt{7}}=\sqrt{\dfrac{3}{7}}=\dfrac{\sqrt{21}}{7}\)

=>\(sinAHN=\dfrac{\sqrt{21}}{7}\)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
GA
Xem chi tiết
BT
Xem chi tiết
SN
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
TM
Xem chi tiết
NK
Xem chi tiết
TA
Xem chi tiết