Bài 9: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

NV

Mấy bạn ơi giúp mình với nha. Mình cảm ơn trước

NT
4 tháng 2 2021 lúc 20:28

ĐKXĐ: \(x\notin\left\{-7;3;-3\right\}\)

a) Ta có: \(B=\left(\dfrac{x^2+1}{x^2-9}-\dfrac{x}{x+3}+\dfrac{5}{x-3}\right):\left(\dfrac{2x+10}{x+3}-1\right)\)

\(=\left(\dfrac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{2x+10}{x+3}-\dfrac{x+3}{x+3}\right)\)

\(=\dfrac{x^2+1-x^2+3x+5x+15}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+10-x-3}{x+3}\)

\(=\dfrac{8x+16}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+7}\)

\(=\dfrac{8x+16}{\left(x-3\right)\left(x+7\right)}\)

b) Ta có: |x-1|=2

\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)

Thay x=-1 vào biểu thức \(B=\dfrac{8x+16}{\left(x-3\right)\left(x+7\right)}\), ta được:

\(B=\dfrac{8\cdot\left(-1\right)+16}{\left(-1-3\right)\left(-1+7\right)}=\dfrac{-8+16}{-4\cdot6}=\dfrac{8}{-24}=\dfrac{-1}{3}\)

Vậy: Khi x=-1 thì \(B=\dfrac{-1}{3}\)

c) Để \(B=\dfrac{x+5}{6}\) thì \(=\dfrac{8x+16}{\left(x-3\right)\left(x+7\right)}=\dfrac{x+5}{6}\)

\(\Leftrightarrow6\left(8x+16\right)=\left(x+5\right)\left(x-3\right)\left(x+7\right)\)

\(\Leftrightarrow48x+96=\left(x^2-3x+5x-15\right)\left(x+7\right)\)

\(\Leftrightarrow\left(x^2+2x-15\right)\left(x+7\right)=48x+96\)

\(\Leftrightarrow x^3+7x^2+2x^2+14x-15x-105-48x-96=0\)

\(\Leftrightarrow x^3+9x^2-49x-201=0\)

\(\Leftrightarrow x^3+3x^2+6x^2+18x-67x-201=0\)

\(\Leftrightarrow x^2\left(x+3\right)+6x\left(x+3\right)-67\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+6x-67\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+6x+9-76\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2-76\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+3-2\sqrt{19}\right)\left(x+3+2\sqrt{19}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+3-2\sqrt{19}=0\\x+3+2\sqrt{19}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(loại\right)\\x=2\sqrt{19}-3\left(nhận\right)\\x=-2\sqrt{19}-3\left(nhận\right)\end{matrix}\right.\)

Vậy: Để \(B=\dfrac{x+5}{6}\) thì \(x\in\left\{2\sqrt{19}-3;-2\sqrt{19}-3\right\}\)

Bình luận (0)

Các câu hỏi tương tự
TK
Xem chi tiết
NV
Xem chi tiết
TK
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết
NA
Xem chi tiết
NV
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết