Bài 3: Một số phương trình lượng giác thường gặp

PK

 

Mấy bạn giúp mình giải các p/t lượng giác trong hình với ạ!Mình cám ơn!undefined

HP
25 tháng 9 2021 lúc 20:32

1.

\(pt\Leftrightarrow sin4x\left(sin5x+sin3x\right)=sin2x.sinx\)

\(\Leftrightarrow2sin^24x.cosx=sin2x.sinx\)

\(\Leftrightarrow2sin^24x.cosx=2sin^2x.cosx\)

\(\Leftrightarrow2cosx.\left(sin^24x-sin^2x\right)=0\)

\(\Leftrightarrow2cosx.\left(sin4x-sinx\right)\left(sin4x+sinx\right)=0\)

\(\Leftrightarrow8cosx.sin\dfrac{5x}{2}.cos\dfrac{3x}{2}.sin\dfrac{5x}{2}.cos\dfrac{3x}{2}=0\)

\(\Leftrightarrow8cosx.sin5x.sin3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin5x=0\\sin3x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k\pi}{5}\\x=\dfrac{k\pi}{3}\end{matrix}\right.\)

Bình luận (0)
HP
25 tháng 9 2021 lúc 20:44

\(pt\Leftrightarrow sin8x+sin2x=sin16x+sin2x\)

\(\Leftrightarrow sin8x=2sin8x.cos8x\)

\(\Leftrightarrow sin8x\left(1-2cos8x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin8x=0\\cos8x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}8x=k\pi\\8x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{8}\\x=\pm\dfrac{\pi}{24}+\dfrac{k\pi}{4}\end{matrix}\right.\)

Bình luận (1)

Các câu hỏi tương tự
TA
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
DD
Xem chi tiết
TT
Xem chi tiết
FN
Xem chi tiết