Hình học 10

NT

LỚP 10 : HÌNH HỌC 

CHƯƠNG 2 :TÍCH VÔ HƯỚNG CỦA HAI VECTƠ .

Bài 1 : Trong hệ tọa độ oxy . Cho 3 điểm A ( -1 ; 1 ) , B ( 1 ; 3 ) , C ( 1 ; -1 ) .

a> CM : 3 điểm ABC không thẳng hàng . 

b> Tìm tọa độ trọng tâm tam giác ABC . 

c> Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành . 

d>CM : tam giác ABC vuông cân tại A . 

e>Tìm tọa độ điểm E sao cho tam giác ABE vuông cân tại A . 

g> Tìm tọa độ điểm M nằm trên trục hoành sao cho tam giác OMA cân tại O .

TL
11 tháng 8 2015 lúc 0:40

a) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\) . Vì \(\frac{2}{2}\ne\frac{2}{-2}\) nên \(\overrightarrow{AB};\overrightarrow{AC}\) không cùng phương => A; B; C không thẳng hàng

b) Gọi G là trọng tâm tam giác ABC => \(\begin{cases}x_G=\frac{x_A+x_B+x_C}{3}=\frac{-1+1+1}{3}=\frac{1}{3}\\y_G=\frac{y_A+y_B+y_C}{3}=\frac{1+3+\left(-1\right)}{3}=1\end{cases}\)=> G(1/3; 1)

c) ABCD là hình bình hành <=> \(\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\begin{cases}x_D-x_A=x_C-x_B\\y_D-y_A=y_C-y_B\end{cases}\) <=> \(\begin{cases}x_D+1=0\\y_D-1=-4\end{cases}\) <=> \(\begin{cases}x_D=-1\\y_D=-3\end{cases}\) Vậy D (-1;-3)

d)  \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)

=> \(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\)  =>  \(\overrightarrow{AB};\overrightarrow{AC}\) vuông góc với nhau => tam giác ABC vuông tại A

Ta có: AB2 = 2+ 22 = 8 ; AC2 = 22 + (-2)2 = 8 => AB = AC => Tam giác ABC cân tại A

vậy...

e) Có thể đề của bạn là tam giác ABE vuông cân tại E  ( Khi đó giải điều kiện: EA = EB và vec tơ EA . Vec tơ EB = 0)

g) M nằm trên Ox => M (m; 0)

Tam giác OMA cân tại O <=> OM = OA  Hay OM2 = OA<=> m= (-1)+ 12 => m2 = 2 <=> m = \(\sqrt{2}\) hoặc m = -  \(\sqrt{2}\)

Vậy M (\(\sqrt{2}\); 0) ; M (-\(\sqrt{2}\); 0 )

Bình luận (0)

Các câu hỏi tương tự
KN
Xem chi tiết
DD
Xem chi tiết
PT
Xem chi tiết
NV
Xem chi tiết
Xem chi tiết
LT
Xem chi tiết
NG
Xem chi tiết
MN
Xem chi tiết
TT
Xem chi tiết