Bài 2: Cực trị hàm số

TV

log9a=log12b=log16(a+b) mệnh đề đúng là :
a) \(\dfrac{a}{b}\in\left(\dfrac{2}{3};1\right)\) b)\(\dfrac{a}{b}\in\left(0;\dfrac{2}{3}\right)\) c)\(\dfrac{a}{b}\in\left(9;12\right)\) d)\(\dfrac{a}{b}\in\left(9;16\right)\)

AH
26 tháng 11 2017 lúc 22:27

Lời giải:

Đặt \(\log_9a=\log_{12}b=\log_{16}(a+b)=t\)

\(\left\{\begin{matrix} a=9^t\\ b=12^t\\ a+b=16^t\end{matrix}\right.\Rightarrow 9^t+12^t=16^t\)

Chia 2 vế cho \(12^t\) ta có:

\(\left(\frac{9}{12}\right)^t+1=\left(\frac{16}{12}\right)^t\)

\(\Leftrightarrow \left(\frac{3}{4}\right)^t+1=\left(\frac{4}{3}\right)^t\) (1)

Đặt \(\frac{a}{b}=\left(\frac{9}{12}\right)^t=\left(\frac{3}{4}\right)^t=k\). Thay vào (1):

\(k+1=\frac{1}{k}\Leftrightarrow k^2+k-1=0\)

\(\Leftrightarrow \frac{a}{b}=k=\frac{-1+ \sqrt{5}}{2}\) (do \(k>0\) nên loại TH \(k=\frac{-1-\sqrt{5}}{2}\) )

Thấy \(\frac{-1+\sqrt{5}}{2}\in (0;\frac{2}{3})\) nên chọn đáp án b

Bình luận (1)

Các câu hỏi tương tự
BK
Xem chi tiết
ML
Xem chi tiết
SK
Xem chi tiết
AN
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
NB
Xem chi tiết
SK
Xem chi tiết
NT
Xem chi tiết