Bài 2: Giới hạn của hàm số

TC

\(\lim\limits_{x\rightarrow1}\dfrac{-\sqrt{4x-3}+\sqrt[3]{6x-5}}{\left(x-1\right)^2}\)

NL
9 tháng 4 2021 lúc 5:09

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x-1-\sqrt{4x-3}\right)+\left(\sqrt[3]{6x-5}-\left(2x-1\right)\right)}{\left(x-1\right)^2}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{4\left(x-1\right)^2}{2x-1+\sqrt[]{4x-3}}-\dfrac{4\left(x-1\right)^2\left(2x+1\right)}{\sqrt[3]{\left(6x-5\right)^2}+\left(2x-1\right)\sqrt[3]{6x-5}+\left(2x-1\right)^2}}{\left(x-1\right)^2}\)

\(=\lim\limits_{x\rightarrow1}\left(\dfrac{4}{2x-1+\sqrt[]{4x-3}}-\dfrac{4\left(2x+1\right)}{\sqrt[3]{\left(6x-5\right)^2}+\left(2x-1\right)\sqrt[3]{6x-5}+\left(2x-1\right)^2}\right)=-2\)

Bình luận (0)
H24
9 tháng 4 2021 lúc 1:27

\(lim\left(x->1\right)\dfrac{-\sqrt{4x-3}+\sqrt[3]{6x-5}}{\left(x-1\right)^2}\)

Đặt \(\sqrt{4x-3}=f\left(x\right);\sqrt[3]{6x-5}=g\left(x\right)\Rightarrow g\left(x\right)^6-f\left(x\right)^6=4\left(x-1\right)^2\left(16x-13\right)\)

\(f\left(1\right)=1;g\left(1\right)=1\)

Ta có 

\(lim\left(x->1\right)\dfrac{-f\left(x\right)+g\left(x\right)}{\left(x-1\right)^2}=lim\left(x->1\right)\dfrac{g\left(x\right)^6-f\left(x\right)^6}{\left(x-1\right)^2}\cdot\dfrac{1}{g\left(x\right)^5+g\left(x\right)^4f\left(x\right)+g\left(x\right)^3f\left(x\right)^2+g\left(x\right)^2f\left(x\right)^3+g\left(x\right)f\left(x\right)^4+f\left(x\right)^5}\)

\(=lim\left(x->1\right)\dfrac{4\left(16x-3\right)}{g\left(x\right)^5+g\left(x\right)^4f\left(x\right)+g\left(x\right)^3f\left(x\right)^2+g\left(x\right)^2f\left(x\right)^3+g\left(x\right)f\left(x\right)^4+f\left(x\right)^5}\)

\(=\dfrac{4\left(16-3\right)}{1^5+1^4\cdot1+1^3\cdot1^2+1^2\cdot1^3+1\cdot1^4+1^5}=\dfrac{26}{3}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết