Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

TK

\(\left\{{}\begin{matrix}x+y=7\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{7}{12}\end{matrix}\right.\)

nhờ mọi ng giúp ạ em đang cần gấp

 

NL
7 tháng 2 2021 lúc 13:20

ĐKXĐ : \(xy\ne0\) 

- Từ PT ( II ) ta được : \(\dfrac{x+y}{xy}=\dfrac{7}{xy}=\dfrac{7}{12}\)

\(\Rightarrow xy=12\)

- Hệ phương trình có nghiệm là nghiệm của phương trình :

\(x^2-7x+12=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)

Vậy hệ phương trình có tập nghiệm \(S=\left\{\left(4;3\right);\left(3;4\right)\right\}\)

 

Bình luận (0)
NT
7 tháng 2 2021 lúc 13:30

Ta có: \(\left\{{}\begin{matrix}x+y=7\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{7}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\\dfrac{1}{7-y}+\dfrac{1}{y}=\dfrac{7}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\\dfrac{y}{y\left(7-y\right)}+\dfrac{7-y}{y\left(7-y\right)}=\dfrac{7}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\\dfrac{7}{y\left(7-y\right)}=\dfrac{7}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\7y-y^2=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\y^2-7y+12=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\\left(y-3\right)\left(y-4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7-y\\\left[{}\begin{matrix}y-3=0\\y-4=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=7-3=4\\x=7-4=3\end{matrix}\right.\\\left[{}\begin{matrix}y=3\\y=4\end{matrix}\right.\end{matrix}\right.\)

Vậy: Hệ phương trình có hai cặp nghiệm (x,y) là (4;3) và (3;4)

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
NH
Xem chi tiết
SK
Xem chi tiết
XH
Xem chi tiết
TN
Xem chi tiết
HN
Xem chi tiết
XM
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết