Ôn thi vào 10

PP

\(\left\{{}\begin{matrix}x=\dfrac{3}{4}y\\\dfrac{1}{2}\left(x+3\right)\left(y-2\right)-\dfrac{1}{2}xy=9\end{matrix}\right.\)

giải hệ phương trình

MH
30 tháng 5 2022 lúc 11:26

Thay \(x=\dfrac{3}{4}y\) vào phương trình dưới, ta có:

\(\dfrac{1}{2}\left(\dfrac{3}{4}y+3\right)\left(y-2\right)-\dfrac{1}{2}.\dfrac{3}{4}y^2=9\)

\(\Leftrightarrow\dfrac{3}{8}y^2-\dfrac{3}{4}y+\dfrac{3}{2}y-3-\dfrac{3}{8}y^2=9\\ \Leftrightarrow\dfrac{3}{4}y=12\\ \Leftrightarrow y=18\Rightarrow x=12\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(12;18\right)\)

Bình luận (1)

Các câu hỏi tương tự
UI
Xem chi tiết
TT
Xem chi tiết
AD
Xem chi tiết
AP
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
NM
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết