cộng tất cả lại ==> đưa về dạng bình phương ==> pt có nghiệm duy nhất
\(\left(0;0;0\right)\)
cộng tất cả lại ==> đưa về dạng bình phương ==> pt có nghiệm duy nhất
\(\left(0;0;0\right)\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+y^2-xy+4y+1=0\\y\left(7-x^2-y^2+2xy\right)=2\left(x^2+1\right)\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{matrix}\right.\)
Giải hệ
a) \(\left\{{}\begin{matrix}xy+y^2=1+y\\x^2+2y^2+2xy=4+x\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-2y^2-xy+2y-x=0\\x^2-y^2+6xy+12=0\end{matrix}\right.\)
Giaỉ hệ phương trình
1) \(\left\{{}\begin{matrix}x^2-2xy+x+y=0\\x^4-x^2\left(4y-3\right)+y^2=0\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}3x^2+2xy+y^2=11\\x^2+2xy+3y^2=17\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x^3-2y^3-x-4y=0\\13x^2-41xy+21y^2+9=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2-4xy+x+2y=0\\x^4-8x^2y+3x^2+4y^2=0\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^5-x^4y+x-y=0\left(1\right)\\x^3-3x^2y+4xy^2-4y^3=54\left(2\right)\end{matrix}\right.\)
Giải hệ phương trình
1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x^2-2xy-6=6y+2x\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-x=y+3\end{matrix}\right.\)
4.\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\end{matrix}\right.\)
6.\(\left\{{}\begin{matrix}x^3\left(x-y\right)+x^2y^2=1\\x^2\left(xy+3\right)-3xy=3\end{matrix}\right.\)
7.\(\left\{{}\begin{matrix}x^2+3y-6x=0\\9x^2-6xy^2+y^4-3y+9=0\end{matrix}\right.\)
8.\(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x+y-xy=2y^2-x^2\end{matrix}\right.\)
9.\(\left\{{}\begin{matrix}8x^3-y=y^3-2x\\x^2+y^2=x+2y\end{matrix}\right.\)
10.\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)
11.\(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+2\right)=4\left(y+2\right)\\x^2+y^2+\left(y+2\right)\left(x+y+2\right)=4\left(y+2\right)\end{matrix}\right.\)
12. \(\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x^2+3xy+2y^2+x+y=0\end{matrix}\right.\)
13. \(\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3+\left(x-5\right)^2+\left(y+5\right)^2=55\end{matrix}\right.\)
14. \(\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\\\frac{1}{x^3}+\frac{1}{y^3}+3=x^3y^3\end{matrix}\right.\)
15.\(\left\{{}\begin{matrix}x^2+y^2+4x+2y=3\\x^2+7y^2-4xy+6y=13\end{matrix}\right.\)
16. \(\left\{{}\begin{matrix}x^2-5xy+x-5y^2=42\\7xy+6y^2+42=x\end{matrix}\right.\)
17.\(\left\{{}\begin{matrix}x^2+xy+y^2=13\\x^4+x^2y^2+y^4=91\end{matrix}\right.\)
18.\(\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
Đây là các bài hệ trong đề thi chuyên toán mong mọi người giúp vì mình bận quá nên không thể làm hết được ạ
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
Giải hệ pt
a.\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^2-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}x+\dfrac{X+3y}{x^2+y^2}=3\\y-\dfrac{y-3x}{x^2+y^2}=0\end{matrix}\right.\)
Giải hpt: 1, \(\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\x^2+y^2=x-4y\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\xy+y^2+3y+1=0\end{matrix}\right.\)