Violympic toán 9

CD

\(\left\{{}\begin{matrix}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{matrix}\right.\)
giải hệ phương trình

NL
19 tháng 11 2019 lúc 1:21

ĐKXĐ: ...

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2y=y^2+2\\3xy^2=x^2+2\end{matrix}\right.\) \(\Rightarrow\frac{x}{y}=\frac{y^2+2}{x^2+2}\)

\(\Rightarrow x^3+2x=y^3+2y\Rightarrow x^3-y^3+2\left(x-y\right)=0\)

\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0\)

\(\Rightarrow x=y\)

Thay vào pt đầu:

\(3x^3=x^2+2\Leftrightarrow3x^3-x^2-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x^2+2x+2\right)=0\)

\(\Rightarrow x=y=1\)

Bình luận (0)
 Khách vãng lai đã xóa