Chương II - Hàm số bậc nhất

TT

\(\left\{{}\begin{matrix}3x+\left(m-1\right)y=12\\\left(m-1\right)x+12y=24\end{matrix}\right.\)     

1 ) giải hệ phương trình với m=2

2)tìm m để hệ phương trình có một nghiệm sao cho x+y>1

NL
7 tháng 2 2021 lúc 8:44

2, - Để hệ phương trình có nghiệm duy nhất :

\(\Leftrightarrow\dfrac{3}{m-1}\ne\dfrac{m-1}{12}\ne\dfrac{1}{2}\)

\(\Rightarrow m\ne7\)

- Hệ PT \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12-\left(m-1\right)y}{3}\\\left(m-1\right)x+12y=24\end{matrix}\right.\)

- Thay x từ PT ( I) vào PT ( II ) ta được :\(\dfrac{\left(m-1\right)\left(12-my+y\right)}{3}+12y=24\)

\(\Leftrightarrow12m-m^2y+my-12+my-y+36y=72\)

\(\Leftrightarrow y\left(-m^2+2m+35\right)=84-12m\)

\(\Leftrightarrow y=\dfrac{84-12m}{-m^2+2m+35}=\dfrac{12\left(7-m\right)}{\left(m+5\right)\left(m-7\right)}=-\dfrac{12}{m+5}\)

- Thay lại y vào PT ( I ) ta được : \(x=\dfrac{12+\dfrac{12\left(m-1\right)}{m+5}}{3}\)

\(=\dfrac{\dfrac{12\left(m+5\right)+12\left(m-1\right)}{m+5}}{3}=\dfrac{12\left(2m+4\right)}{3\left(m+5\right)}=\dfrac{8\left(m+2\right)}{m+5}\)

- Ta có : \(x+y=\dfrac{8\left(m+2\right)}{m+5}-\dfrac{12}{m+5}=\dfrac{8m+16-12}{m+5}=\dfrac{8m+4}{m+5}\)

- Để \(x+y>1\)

\(\Leftrightarrow\dfrac{8m+4-m-5}{m+5}=\dfrac{7m-1}{m+5}>0\)

- Lập bảng xét dấu :

- Từ bảng xét dấu : - Để x + y > 1 thì :

\(m\in\left(-\infty;-5\right)\cup\left(\dfrac{1}{7};+\infty\right)\backslash\left\{7\right\}\)

Vậy ...

a, - Thay m = 2 lần lượt vào x, y chứa tham số m ta được :

x = \(\dfrac{24}{7};y=\dfrac{12}{7}\)

 

 

 

 

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
HN
Xem chi tiết
TL
Xem chi tiết
AA
Xem chi tiết
DC
Xem chi tiết
KR
Xem chi tiết
KR
Xem chi tiết
NM
Xem chi tiết
KN
Xem chi tiết