Violympic toán 9

KZ

\(\left(3x+2\right)\sqrt{2x-3}=2x^2+3x-6\)

\(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+4}\)

LV
12 tháng 1 2020 lúc 10:43

a,ĐK:\(x\ge\frac{3}{2}\)

\(PT\Leftrightarrow\left(3x+2\right)\sqrt{2x-3}-\left(3x+2\right)-2x^2+8=0\)

\(\Leftrightarrow\left(3x+2\right)\left(\sqrt{2x-3}-1\right)-2\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(3x+2\right).\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}-2\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow2\left(x-2\right)\left[\frac{3x+2}{\sqrt{2x-3}+1}-\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\frac{3x+2}{\sqrt{2x-3}+1}=x+2\left(1\right)\end{matrix}\right.\)

Giải (1)\(\Leftrightarrow3x+2=\sqrt{2x-3}\left(x+2\right)+x+2\)

\(\Leftrightarrow2x=\sqrt{2x-3}\left(x+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{3}{2}\\4x^2=\left(2x-3\right)\left(x^2+4x+4\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{3}{2}\\2x^3+x^2-4x-12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{3}{2}\\\left(x-2\right)\left(2x^2+5x+6\right)=0\end{matrix}\right.\) \(\Leftrightarrow x=2\left(tm\right)\)

Vậy \(x=2\)

b, Đề là \(5\sqrt{x+1}\) hay \(5\sqrt{x+4}\) vậy?

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KN
Xem chi tiết
DD
Xem chi tiết
KN
Xem chi tiết
DN
Xem chi tiết
BL
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
NY
Xem chi tiết
LE
Xem chi tiết