Bài 2: Tích phân

QT

\(\int_0^m\left|\dfrac{x^2}{m}-\sqrt{mx}\right|dx\)=3

Giải bài này giúp mình với 

NL
26 tháng 2 2021 lúc 17:43

Đặt \(\sqrt{mx}=u\Rightarrow x=\dfrac{u^2}{m}\Rightarrow dx=\dfrac{2udu}{m}\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow u=0\\x=m\Rightarrow u=\left|m\right|\end{matrix}\right.\)

\(I=\int\limits^{\left|m\right|}_0\left|\dfrac{u^4}{m^3}-u\right|.\dfrac{2u}{m}du\)

Xét hàm \(f\left(u\right)=\dfrac{u^4}{m^3}-u=\dfrac{u\left(u-m\right)\left(u^2+mu+m^2\right)}{m^3}\) với \(u\in\left(0;\left|m\right|\right)\)

Do \(u^2+mu+m^2>0\)

- Khi \(m< 0\Rightarrow u\left(u-m\right)>0\Rightarrow f\left(u\right)< 0\)

- Khi \(m>0\Rightarrow u\left(u-m\right)< 0\) ; \(\forall u\in\left(0;m\right)\Rightarrow f\left(u\right)< 0\)

\(\Rightarrow f\left(u\right)< 0\) ; \(\forall m\) và \(u\in\left(0;\left|m\right|\right)\)

\(\Rightarrow\left|f\left(u\right)\right|=-f\left(u\right)=u-\dfrac{u^4}{m^3}\)

\(\Rightarrow I=\int\limits^{\left|m\right|}_0\left(u-\dfrac{u^4}{m^3}\right)\dfrac{2u}{m}du=\int\limits^{\left|m\right|}_0\left(\dfrac{2}{m}u^2-\dfrac{2}{m^4}u^5\right)du\)

\(=\left(\dfrac{2}{3m}u^3-\dfrac{1}{3m^4}u^6\right)|^{\left|m\right|}_0=\dfrac{2\left|m^3\right|}{3m}-\dfrac{m^6}{3m^4}=3\)

\(\Leftrightarrow2m\left|m\right|-m^2=9\)

- Với \(m< 0\Rightarrow VT< 0\Rightarrow\) pt vô nghiệm

- Với \(m>0\Rightarrow m^2=9\Rightarrow m=3\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết
HK
Xem chi tiết
DL
Xem chi tiết
KD
Xem chi tiết
HD
Xem chi tiết
MA
Xem chi tiết
HN
Xem chi tiết