Bài 2: Tích phân

HK

Tính (trình bày cách giải ln nka):

a) \(\int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{3}}\dfrac{1}{cos^4x}dx\)

b) \(\int_0^1\dfrac{\left(x+1\right)^2}{x^2+1}dx\)

c)\(\int_1^2\dfrac{x^2+2lnx}{x}dx\)

d) \(\int_1^2\dfrac{x^2+3x+1}{x^2+x}dx\)

e) \(\int_0^33x\left(x+\sqrt{x^2+16}\right)dx\)

AH
20 tháng 11 2017 lúc 16:23

Câu a)

\(\int \frac{1}{\cos^4x}dx=\int \frac{\sin ^2x+\cos^2x}{\cos^4x}dx=\int \frac{\sin ^2x}{\cos^4x}dx+\int \frac{1}{\cos^2x}dx\)

Xét \(\int \frac{1}{\cos^2x}dx=\int d(\tan x)=\tan x+c\)

Xét \(\int \frac{\sin ^2x}{\cos^4x}dx=\int \frac{\tan ^2x}{\cos^2x}dx=\int \tan^2xd(\tan x)=\frac{\tan ^3x}{3}+c\)

Vậy :

\(\int \frac{1}{\cos ^4x}dx=\frac{\tan ^3x}{3}+\tan x+c\)

\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{dx}{\cos^4 x}=\)\(\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|\left ( \frac{\tan ^3 x}{3}+\tan x+c \right )=\frac{44}{9\sqrt{3}}\)

Câu b)

\(\int \frac{(x+1)^2}{x^2+1}dx=\int \frac{x^2+1+2x}{x^2+1}dx=\int dx+\int \frac{2xdx}{x^2+1}\)

\(=x+c+\int \frac{d(x^2+1)}{x^2+1}=x+\ln (x^2+1)+c\)

Do đó:

\(\int ^{1}_{0}\frac{(x+1)^2}{x^2+1}dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|(x+\ln (x^2+1)+c)=\ln 2+1\)

Bình luận (0)
AH
20 tháng 11 2017 lúc 16:46

Câu c)

\(\int \frac{x^2+2\ln x}{x}dx=\int xdx+2\int \frac{2\ln x}{x}dx\)

\(=\frac{x^2}{2}+c+2\int \ln xd(\ln x)\)

\(=\frac{x^2}{2}+c+\ln ^2x\)

\(\Rightarrow \int ^{2}_{1}\frac{x^2+2\ln x}{x}dx=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\left ( \frac{x^2}{2}+\ln ^2x +c \right )=\frac{3}{2}+\ln ^22\)

Câu d)

\(\int^{2}_{1} \frac{x^2+3x+1}{x^2+x}dx=\int ^{2}_{1}dx+\int ^{2}_{1}\frac{2x+1}{x^2+x}dx\)

\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|x+\int ^{2}_{1}\frac{d(x^2+x)}{x^2+x}=1+\left.\begin{matrix} 2\\ 1\end{matrix}\right|\ln |x^2+x|=1+\ln 6-\ln 2\)

\(=1+\ln 3\)

Bình luận (0)
AH
20 tháng 11 2017 lúc 16:52

Câu e)

Xét \(\int 3x(x+\sqrt{x^2+16})dx=\int 3x^2dx+\int 3x\sqrt{x^2+16}dx\)

Có:

\(\int 3x^2dx=x^3+c\)

\(\int 3x\sqrt{x^2+16}dx=\frac{3}{2}\int \sqrt{x^2+16}d(x^2+16)\)

\(=\sqrt{(x^2+16)^3}+c\)

Do đó: \(\int 3x(x+\sqrt{x^2+16})dx=x^3+\sqrt{(x^2+16)^3}+c\)

\(\Rightarrow \int ^{3}_{0}3x(x+\sqrt{x^2+16})dx=\left.\begin{matrix} 3\\ 0\end{matrix}\right|(x^3+\sqrt{(x^2+16)^3}+c)=88\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
KD
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
HT
Xem chi tiết
HD
Xem chi tiết
SK
Xem chi tiết