Giải:
Số mol của H2 là:
nH2 = V/22,4 = 19,6/22,4 = 0,875 (mol)
Gọi nMg = x (mol) và nAl = y (mol)
PTHH: Mg + 2HCl -> MgCl2 + H2↑
---------x--------------------------x--
PTHH: 2Al + 6HCl -> 2AlCl3 + 3H2↑
----------y-----------------------------\(\dfrac{3}{2}y\)--
Ta có hệ phương trình:
\(\left\{{}\begin{matrix}m_{Mg}=m_{Al}\\n_{H_2}=0,875\left(mol\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24x-27y=0\\x+\dfrac{3}{2}y=0,875\left(mol\right)\end{matrix}\right.\)
Giải hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x=0,375\left(mol\right)\\y=\dfrac{1}{3}\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m_{Mg}=n.M=0,375.24=9\left(g\right)\\m_{Al}=n.M=\dfrac{1}{3}.27=9\left(g\right)\end{matrix}\right.\)
Khối lượng hỗn hợp kim loại là:
\(m_{Mg}+m_{Al}=9+9=18\left(g\right)\)
Vậy ...
\(n_{H_2}=\dfrac{V}{22,4}=\dfrac{19,6}{22,4}=0,875\left(mol\right)\)
Đặt \(m_{Mg}=m_{Al}=a\left(g\right)\left(a>0\right)\)
\(\Rightarrow n_{Mg}=\dfrac{m}{M}=\dfrac{a}{24}\left(mol\right)\\ n_{Al}=\dfrac{m}{M}=\dfrac{a}{27}\left(mol\right)\)
\(pthh:Mg+HCl\rightarrow MgCl_2+H_2\left(1\right)\\ 2Al+6HCl\rightarrow2AlCl_3+3H_2\left(2\right)\)
Theo \(pthh\left(1\right):n_{H_2\left(1\right)}=n_{Al}=\dfrac{a}{24}\left(mol\right)\)
Theo \(pthh\left(1\right):n_{H_2\left(1\right)}=\dfrac{3}{2}n_{Al}=\dfrac{3}{2}\cdot\dfrac{a}{27}=\dfrac{a}{18}\left(mol\right)\)
\(\Rightarrow\Sigma n_{H_2}=n_{H_2\left(1\right)}+n_{H_2\left(2\right)}\\ \Rightarrow0,875=\dfrac{a}{24}+\dfrac{a}{18}\\ \Rightarrow\dfrac{7}{72}a=0,875=9\left(T/m\right)\)
\(m_{h^2}=2a=2\cdot9=18\left(g\right)\)