\(x^2-2\cdot x\cdot\left(m-1\right)+2m-3=0\)
Ta có \(\Delta=4\cdot\left(m-1\right)^2-4\cdot\left(2m-3\right)\)
\(\Leftrightarrow\Delta=4m^2-16m+16=4\cdot\left(m-2\right)^2\ge0\forall m\)
+) Khi \(\Delta=0\Leftrightarrow m=2\Leftrightarrow x_1=x_2=\frac{2\cdot\left(m-1\right)}{2}=m-1=1\)
Khi đó \(x_1^2-2x_2=-1\) ( loại )
+) Khi \(\Delta>0\Leftrightarrow\left[{}\begin{matrix}x_1=\frac{2\cdot\left(m-1\right)+\sqrt{4\left(m-2\right)^2}}{2}=m-1+\left|m-2\right|\\x_2=\frac{2\cdot\left(m-1\right)-\sqrt{4\left(m-2\right)^2}}{2}=m-1-\left|m-2\right|\end{matrix}\right.\)
* Xét \(m\ge2\Leftrightarrow\left[{}\begin{matrix}x_1=2m-3\\x_2=1\end{matrix}\right.\)
\(\Rightarrow\left(2m-3\right)^2-2=7\Leftrightarrow\left(2m-3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}m=3\left(chon\right)\\m=0\left(loai\right)\end{matrix}\right.\)
* Xét \(m< 2\Leftrightarrow\left[{}\begin{matrix}x_1=1\\x_2=2m-3\end{matrix}\right.\)
\(\Rightarrow1-2\cdot\left(2m-3\right)=7\Leftrightarrow m=0\left(chon\right)\)
Vậy \(m\in\left\{0;3\right\}\) thì phương trình có 2 nghiệm thỏa mãn.
\(x^2-2\left(m-1\right)x+2m-3=0\)
( Δ'=b'^2-ac = \(\left(m-2\right)^2\)\(\ge0\) ∀ m ϵ R)
\(\Leftrightarrow x^2-2mx+2x+2m-3=0\)
\(\Leftrightarrow x^2-2mx+3x-x+2m-3=0\)
\(\Leftrightarrow x^2-x-2mx+2m+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)-2m\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2m+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2m+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x_{ }=1\\x_{ }=2m-3\end{matrix}\right.\)(*)
Thay (*) vào điều kiện \(x_1^2-2x_2=7\)
Ta được 2 trường hợp :
Với \(\left[{}\begin{matrix}x_1=1\\x_2=2m-3\end{matrix}\right.\)
Thay vào (*) được m=0 (1)
TH2: \(\left[{}\begin{matrix}x_1=2m-3\\x_2=1\end{matrix}\right.\)
Ta thay vào (*) và tính được :
\(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)(2)
Từ (1) và (2) suy ra \(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)thỏa mãn điều kiện.
Mấy câu này dể ra trong đề tuyển sinh lên 10 để học sinh lấy điểm ấy em , cố lên cobe cuối cấp rồi =))
Tặng mỗi anh chị 1 tick, anh chị giỏi quá, mặc dù em đọc không hiểu gì nhưng thấy mn kết quả giống nhau là đúng rồi :))