Ôn tập: Phân thức đại số

H24

H=\(\left(\frac{x+x^3}{1-x^2}-\frac{x-x^3}{1+x^2}\right):\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}\right)\)

RÚT GỌN PHÂN THỨC TRÊN HỘ MÌNH NHÉ (^-^)

NT
8 tháng 9 2020 lúc 17:04

Ta có: \(H=\left(\frac{x+x^3}{1-x^2}-\frac{x-x^3}{1+x^2}\right):\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}\right)\)

\(=\left(\frac{x\left(x^4+2x^2+1\right)}{\left(1-x^2\right)\left(1+x^2\right)}-\frac{x\left(x^4-2x^2+1\right)}{\left(1-x^2\right)\left(1+x^2\right)}\right):\left(\frac{\left(1+x\right)^2}{\left(1-x\right)\left(1+x\right)}-\frac{\left(1-x\right)^2}{\left(1+x\right)\left(1-x\right)}\right)\)

\(=\frac{x^5+2x^3+x-x^5+2x^3-x}{\left(1-x\right)\left(1+x\right)\left(1+x^2\right)}:\frac{x^2+2x+1-x^2+2x-1}{\left(1+x\right)\left(1-x\right)}\)

\(=\frac{4x^3}{\left(1-x\right)\left(1+x\right)\left(1+x^2\right)}\cdot\frac{\left(1+x\right)\left(1-x\right)}{4x}\)

\(=\frac{4x^3}{4x\left(1+x^2\right)}=\frac{4x^3}{4x^3+4x}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
HT
Xem chi tiết
PN
Xem chi tiết
PL
Xem chi tiết
NH
Xem chi tiết
PN
Xem chi tiết
LE
Xem chi tiết
PN
Xem chi tiết