Violympic toán 9

NT

Hai ô tô cùng khởi hành một lúc từ 2 tỉnh A và B cách nhau 400km đi ngược chiều và gặp nhau sau 5h. Nếu vận tốc của mỗi xe vẫn không thay đổi nhưng xe đi chậm xuất phát trước xe kia 40 phút thì 2 xe gặp nhau sau 5h22 phút kể từ lúc xe chậm khởi hành. Tính vận tốc của mỗi xe?

PT
16 tháng 1 2022 lúc 19:56

Gọi vận tốc ô tô khởi hành từ tỉnh A là x (km/h)

Gọi vận tốc ô tô khởi hành từ tỉnh B là y (km/h)

(ĐK: \(x>y>0\) )

Đổi: \(5h22'=\dfrac{161}{30}h,40'=\dfrac{2}{3}h\)

Hai ô tô đi ngược chiều và gặp nhau sau 5h nên ta có phương trình: 

\(5x+5y=400\)

Quãng đường ô tô từ tỉnh A đi được đến lúc gặp nhau là: \(\dfrac{161}{30}x\left(km\right)\)

Quãng đường ô tô từ tỉnh B đi được đến lúc gặp nhau là: \(\dfrac{161}{30}y-\dfrac{2}{3}y=\dfrac{47}{10}y\left(km\right)\)

Do đó ta có phương trình:

\(\dfrac{161}{30}x+\dfrac{47}{10}y=400\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{161}{30}x+\dfrac{47}{10}y=400\\5x+5y=400\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=36\\y=44\end{matrix}\right.\)

Vậy vận tốc ô tô khởi hành từ tỉnh A là 36 (km/h)

Vận tốc ô tô khởi hành từ tỉnh B là 44 (km/h).

Bình luận (3)

Các câu hỏi tương tự
LH
Xem chi tiết
MM
Xem chi tiết
DT
Xem chi tiết
DC
Xem chi tiết
DN
Xem chi tiết
LH
Xem chi tiết
KN
Xem chi tiết
PA
Xem chi tiết
QD
Xem chi tiết