Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

H24

\(Gpt:\sqrt{x^4-7}+\sqrt{x^3-7}=x^2\)

NL
11 tháng 12 2018 lúc 8:31

ĐKXĐ: \(x\ge\sqrt[3]{7}\)

\(\sqrt{x^4-7}-\left(x^2-1\right)+\sqrt{x^3-7}-1=0\)

\(\Leftrightarrow\dfrac{x^4-7-\left(x^2-1\right)^2}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{x^3-8}{\sqrt{x^3-7}+1}=0\)

\(\Leftrightarrow\dfrac{2\left(x^2-4\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)

\(\Leftrightarrow\dfrac{2\left(x-2\right)\left(x+2\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{2\left(x+2\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{x^2+2x+4}{\sqrt{x^3-7}+1}\right)=0\)

Do \(x\ge\sqrt[3]{7}>1\Rightarrow x^2>1\Rightarrow x^2-1>0\)

\(\Rightarrow\dfrac{2\left(x+2\right)}{\sqrt{x^4-7}+\left(x^2-1\right)}+\dfrac{x^2+2x+4}{\sqrt{x^3-7}+1}>0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

Bình luận (1)

Các câu hỏi tương tự
HC
Xem chi tiết
TC
Xem chi tiết
TC
Xem chi tiết
JE
Xem chi tiết
TC
Xem chi tiết
YC
Xem chi tiết
TN
Xem chi tiết
VQ
Xem chi tiết
KR
Xem chi tiết