Ôn thi vào 10

SH

gọi \(x_1,x_2\) là hai nghiệm của phương trình \(x^2-2\left(m-3\right)-6m-7=0\) với m là tham số. Tìm giá trị nhỏ nhất của biểu thức: C=\(\left(x_1+x_2\right)^2+8x_1x_2\)

NT
9 tháng 3 2022 lúc 22:04

\(\Delta'=\left(m-3\right)^2-\left(-6m-7\right)=m^2+16>0\)

Vậy pt có 2 nghiệm pb 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=-6m-7\end{matrix}\right.\)

\(C=4\left(m-3\right)^2+8\left(-6m-7\right)\)

\(=4m^2-24m+36-48m-56=4m^2-72m-20\)

\(=4\left(m^2-18m+81-81\right)-20=4\left(m-9\right)^2-344\ge-344\)

Dấu ''='' xảy ra khi m = 9 

Bình luận (1)
HP
9 tháng 3 2022 lúc 22:24

Bài giải cho đề: "Gọi x1, xlà hai nghiệm của phương trình x2−2(m−3)−6m−7=0 với m là tham số. Tìm giá trị nhỏ nhất của biểu thức: C=(x1+x2)2+8x1x2.".

\(\Delta\)=32m+4>0 \(\Rightarrow\) m>-1/8.

C=8.(-8m-1)=-64m-8.

Vậy: không tồn tại giá trị nhỏ nhất của C.

Bài giải cho đề: "Gọi x1, xlà hai nghiệm của phương trình x2−2(m−3)x−6m−7=0 với m là tham số. Tìm giá trị nhỏ nhất của biểu thức: C=(x1+x2)2+8x1x2.".

\(\Delta\)'=m2+16>0, \(\forall m\).

C=[2(m-3)]2+8(-6m-7)=4m2-72m-20.

Suy ra, Cmin=-344 khi m=9.

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
TN
Xem chi tiết
NR
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết