Ôn thi vào 10

NR

Cho phương trình ẩn \(x\)\(x^2-2\left(m-1\right)x-2=0\) (\(m\) là tham số). Tìm \(m\) để phương trình có 2 nghiệm phân biệt \(x_1\)\(x_2\) sao cho biểu thức: \(A=x_1^2+4x_2^2\) có giá trị nhỏ nhất.

NT
17 tháng 5 2022 lúc 20:07

\(\Delta=\left[-2\left(m-1\right)\right]^2-4.\left(-2\right)\)

   \(=4m^2-8m+8+8\)

   \(=4m^2-8m+16\)

   \(=3m^2+\left(m-4\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)

                                                  \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>4\end{matrix}\right.\) \(\rightarrow m>4\)

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\left(1\right)\\x_1x_2=-2\end{matrix}\right.\)

\(A=x_1^2+4x_2^2\)

\(A=x_1^2+\left(2x_2\right)^2\)

\(\Rightarrow Min_A=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=0\\x_2=0\end{matrix}\right.\)

Thế vào (1) ta được: \(0=2m-2\)

                                \(\Leftrightarrow m=1\)

 

Bình luận (0)

Các câu hỏi tương tự
AP
Xem chi tiết
PP
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
MP
Xem chi tiết
MP
Xem chi tiết
SH
Xem chi tiết
H24
Xem chi tiết