Đặt \(\sqrt{16x+m-4}=a\ge0\Rightarrow4-m=16x-a^2\)
Pt trở thành:
\(a=4x^2-18x+16x-a^2\Leftrightarrow4x^2-a^2-\left(2x+a\right)=0\)
\(\Leftrightarrow\left(2x-a\right)\left(2x+a\right)-\left(2x+a\right)=0\)
\(\Leftrightarrow\left(2x-a-1\right)\left(2x+a\right)=0\Rightarrow\left[{}\begin{matrix}2x-1=a\left(1\right)\\2x=-a\left(2\right)\end{matrix}\right.\)
Trước hết ta biện luận số nghiệm của (1) và (2) dựa vào m:
TH1: \(2x-1=a\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\\left(2x-1\right)^2=16x+m-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{1}{2}\\4x^2-20x+5=m\end{matrix}\right.\)
\(\Rightarrow\) \(m=-20\) pt có nghiệm duy nhất (nghiệm kép); \(-20< m\le-4\) pt có 2 nghiệm; \(m>-4\) pt có 1 nghiệm; \(m< -20\) vô nghiệm. (3)
TH2: \(-2x=a\Rightarrow\left\{{}\begin{matrix}x\le0\\4x^2=16x+m-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\4x^2-16x+4=m\end{matrix}\right.\)
\(\Rightarrow m< 4\) pt vô nghiệm; \(m\ge4\) pt có một nghiệm (4)
Từ (3);(4) ta có nhận xét:
- Nếu \(m\ge4\Rightarrow\) (1) và (2) đều có nghiệm duy nhất \(\Rightarrow\) phương trình đã cho có 2 nghiệm (loại)
- Nếu \(m< -20\) cả 2 pt đều vô nghiệm (loại)
- Nếu \(-20< m\le-4\) \(\Rightarrow\left(1\right)\) có 2 nghiệm, (2) vô nghiệm \(\Rightarrow\) pt có 2 nghiệm (loại)
- Nếu \(m=-20\) thì (1) có 2 nghiệm, (2) vô nghiệm (nhận)
- Nếu \(-4< m< 4\Rightarrow\) (1) có 1 nghiệm, (2) vô nghiệm \(\Rightarrow\) pt đã cho có 1 nghiệm (nhận)
Vậy \(\left[{}\begin{matrix}m=-20\\-4< m< 4\end{matrix}\right.\) thì tập nghiệm của pt có 1 phần tử
\(\Rightarrow\sum T=-20\) (khoảng \(\left(-4;4\right)\) các giá trị nguyên của m triệt tiêu khi cộng lại)