\(A=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+....+\dfrac{2}{99.101}\right).\dfrac{1}{2}\)
\(A=\left(1-\dfrac{1}{101}\right).\dfrac{1}{2}=\dfrac{50}{101}\)
2A=\(\dfrac{1}{1}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\) -\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+......+\(\dfrac{1}{99}\)-\(\dfrac{1}{101}\)
=1-\(\dfrac{1}{101}\)=\(\dfrac{100}{101}\)
\(\Rightarrow\)A=\(\dfrac{50}{101}\)