Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

VQ

giúp mình với!! thanks nha^^

cho a, b, c > 0 thỏa mãn abc=1. cmr:\(\dfrac{a^3}{b\left(c+1\right)}+\dfrac{b^3}{c\left(a+1\right)}+\dfrac{c^3}{a\left(b+1\right)}\ge\dfrac{3}{2}\)

LF
11 tháng 4 2017 lúc 21:43

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a^3}{b\left(c+1\right)}+\dfrac{c+1}{4}+\dfrac{b}{2}\ge3\sqrt[3]{\dfrac{a^3}{b\left(c+1\right)}\cdot\dfrac{c+1}{4}\cdot\dfrac{b}{2}}\)

\(=3\sqrt[3]{\dfrac{a^3}{4\cdot2}\cdot\dfrac{c+1}{c+1}\cdot\dfrac{b}{b}}=3\sqrt[3]{\dfrac{a^3}{8}}=\dfrac{3a}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b^3}{c\left(a+1\right)}\ge\dfrac{3b}{2};\dfrac{c^3}{a\left(b+1\right)}\ge\dfrac{3c}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+\dfrac{a+b+c+3}{4}+\dfrac{a+b+c}{2}\ge\dfrac{3a+3b+3c}{2}\)

\(\Leftrightarrow VT+\dfrac{3\left(a+b+c\right)}{4}+\dfrac{3}{4}\ge\dfrac{3\left(a+b+c\right)}{2}\)

\(\Leftrightarrow VT+\dfrac{3}{4}\ge\dfrac{3\left(a+b+c\right)}{4}\). Mà theo AM-GM ta có:

\(a+b+c\ge3\sqrt[3]{abc}=3\)\(\Rightarrow VT+\dfrac{3}{4}\ge\dfrac{9}{4}\Rightarrow VT\ge\dfrac{3}{2}=VP\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
TV
Xem chi tiết
NC
Xem chi tiết
TY
Xem chi tiết
NT
Xem chi tiết
QD
Xem chi tiết
KR
Xem chi tiết
H24
Xem chi tiết
SC
Xem chi tiết