Bài 2: Giới hạn của hàm số

LL

Giúp em những câu này với ạ!

a) \(\lim\limits_{x\to a} \dfrac{\sin x -\sin a}{x-a}\)

b) \(\lim\limits_{x\to \pi} \dfrac{1-\sin \dfrac{x}{2}}{\pi-x}\)

c) \(\lim\limits_{x\to \dfrac{\pi}{3}} \dfrac{\sin(x-\dfrac{\pi}{3})}{1-2\cos x}\)

d) \(\lim\limits_{x\to a} \dfrac{\tan^2 x - \tan^2 a}{\tan(x-a)}\)

NL
11 tháng 4 2020 lúc 19:52

\(\lim\limits_{x\rightarrow a}\frac{sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}}.cos\left(\frac{x+a}{2}\right)=1.cos\left(\frac{a+a}{2}\right)=cosa\)

b/ \(\lim\limits_{x\rightarrow\pi}\frac{sin\frac{\pi}{2}-sin\frac{x}{2}}{\pi-x}=\lim\limits_{x\rightarrow\pi}\frac{sin\left(\frac{\pi-x}{4}\right)}{\frac{\pi-x}{4}}.\frac{cos\left(\frac{\pi+x}{4}\right)}{2}=\frac{cos\left(\frac{\pi+\pi}{4}\right)}{2}=0\)

c/ Đặt \(x-\frac{\pi}{3}=a\Rightarrow x=a+\frac{\pi}{3}\)

\(\lim\limits_{a\rightarrow0}\frac{sina}{1-2cos\left(a+\frac{\pi}{3}\right)}=\lim\limits_{a\rightarrow0}\frac{sina}{1-cosa+\sqrt{3}sina}\)

\(=\lim\limits_{a\rightarrow0}\frac{2sin\frac{a}{2}cos\frac{a}{2}}{-2sin^2\frac{a}{2}+2\sqrt{3}sin\frac{a}{2}cos\frac{a}{2}}=\lim\limits_{a\rightarrow0}\frac{cos\frac{a}{2}}{-sin\frac{a}{2}+\sqrt{3}cos\frac{a}{2}}=\frac{1}{\sqrt{3}}\)

d/Ta có: \(tana-tanb=\frac{sina}{cosa}-\frac{sinb}{cosb}=\frac{sina.cosb-cosa.sinb}{cosa.cosb}=\frac{sin\left(a-b\right)}{cosa.cosb}\)
Áp dụng:

\(\lim\limits_{x\rightarrow a}\frac{\left(tanx-tana\right)\left(tanx+tana\right)}{\frac{sin\left(x-a\right)}{cos\left(x-a\right)}}=\lim\limits_{x\rightarrow a}\frac{sin\left(x-a\right)\left(tanx+tana\right).cos\left(x-a\right)}{sin\left(x-a\right).cosx.cosa}=\lim\limits_{x\rightarrow a}\frac{\left(tanx+tana\right).cos\left(x-a\right)}{cosx.cosa}\)

\(=\frac{2tana}{cos^2a}\)

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
PV
Xem chi tiết
TT
Xem chi tiết
AN
Xem chi tiết
LN
Xem chi tiết
XT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
LL
Xem chi tiết