Bài 2: Giới hạn của hàm số

PV

tính giới hạn sau:

\(\lim\limits_{x\rightarrow\dfrac{\pi}{6}}\dfrac{\sqrt{3}sinx-cosx}{sin\left(\dfrac{\pi}{3}-2x\right)}\)

AH
11 tháng 3 2018 lúc 22:52

Lời giải:

Ta có:

Áp dụng công thức lượng giác: \(\sin (a-b)=\sin a\cos b-\cos a\sin b\)

thì:

\(\sqrt{3}\sin x-\cos x=-2\left(\frac{1}{2}\cos x-\frac{\sqrt{3}}{2}\sin x\right)=-2\left(\sin \frac{\pi}{6}\cos x-\cos \frac{\pi}{6}\sin x\right)\)

\(=-2\sin \left(\frac{\pi}{6}-x\right)\)

Do đó: \(\lim_{x\to \frac{\pi}{6}}\frac{\sqrt{3}\sin x-\cos x}{\sin (\frac{\pi}{3}-2x)}=-2\lim_{x\to \frac{\pi}{6}}\frac{\sin \left ( \frac{\pi}{6}-x \right )}{\sin \left [ 2(\frac{\pi}{6}-x) \right ]}\)

\(=-\lim_{x\to \frac{\pi}{6}}\frac{\sin \left ( \frac{\pi}{6}-x \right )}{\frac{\pi}{6}-x}.\lim_{x\to \frac{\pi}{6}}\frac{1}{\frac{\sin\left [ 2(\frac{\pi}{6}-x) \right ]}{2(\frac{\pi}{6}-x)}}=-1.1.1=-1\)

(sử dụng công thức \(\lim_{t\to 0} \frac{\sin t}{t}=1\) . Trong TH bài toán \(x\to \frac{\pi}{6}\Rightarrow \frac{\pi}{6}-x\to 0\) )

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
AN
Xem chi tiết
LN
Xem chi tiết
AN
Xem chi tiết
SK
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết