Đề số 1

PD

 

loading...

giúp em những câu chưa khoanh á, em cảm ơn nhiều 

NT
10 tháng 12 2023 lúc 15:29

Câu V:

a: Xét ΔABD vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BD;AD^2=DH\cdot DB\)

=>\(\dfrac{AB^2}{AD^2}=\dfrac{BH\cdot BD}{DH\cdot DB}=\dfrac{BH}{DH}\)

=>\(\dfrac{BH}{DH}=\dfrac{CD^2}{BC^2}=\left(\dfrac{CD}{BC}\right)^2=\left(\dfrac{CD}{3CD}\right)^2=\dfrac{1}{9}\)

=>\(DH=9BH\)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AH^2=HD\cdot HB\)

=>\(9\cdot BH\cdot BH=\left(3\sqrt{10}\right)^2=90\)

=>\(BH^2=10\)

=>\(BH=\sqrt{10}\left(cm\right)\)

=>\(DH=9\sqrt{10}\left(cm\right)\)

\(BD=BH+DH=10\sqrt{10}\left(cm\right)\)

Xét ΔABD vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BD;AD^2=DH\cdot BD\)

=>\(AB^2=\sqrt{10}\cdot10\sqrt{10}=100;AD^2=9\sqrt{10}\cdot\sqrt{10}=90\)

=>\(AB=10\left(cm\right);AD=3\sqrt{10}\left(cm\right)\)

Chu vi hình chữ nhật ABCD là:

\(C_{ABCD}=\left(AB+AD\right)\cdot2=\left(10+3\sqrt{2}\right)\cdot2\left(cm\right)\)

b: Xét ΔHAD có

M,I lần lượt là trung điểm của HD,HA

=>MI là đường trung bình của ΔHAD

=>MI//AD

Ta có: MI//AD

AB\(\perp\)AD

Do đó: MI\(\perp\)AB

Xét ΔMAB có

MI,AH là các đường cao

MI cắt AH tại I

Do đó: I là trực tâm của ΔMAB

=>BI\(\perp\)AM

 

Bình luận (0)

Các câu hỏi tương tự
PD
Xem chi tiết
PD
Xem chi tiết
PD
Xem chi tiết
PD
Xem chi tiết
NS
Xem chi tiết
HV
Xem chi tiết
HN
Xem chi tiết
AD
Xem chi tiết
CK
Xem chi tiết