Chương 4: SỐ PHỨC

NU

giúp em câu 30,31,33,34 với mấy anh chị ơi huhu

giải dúp em cụ thể và dễ hiểu với ạ. do em mới học phần này nên hơi khó hiểu..Bài tập Toán

AH
6 tháng 3 2017 lúc 8:31

Câu 30:

Để ý \((1+i)^2=2i\)\((1-i)(1+i)=2\) nên để cho đỡ vất vả, ta nhân cả hai vế của PT với \(1+i\). Khi đó thu được:

\((2z-1)(2i)+(\overline{z}+1).2=(2-2i)(1+i)=2(1-i)(1+i)=4\)

Khai triển và rút gọn:

\(\Leftrightarrow 2zi-i+\overline{z}=1\)

Đặt \(z=a+bi(a,b\in\mathbb{R})\). \(\Rightarrow \overline{z}=a-bi\)

\(\Rightarrow 2i(a+bi)-i+a-bi=1\Leftrightarrow (a-2b)+i(2a-b-1)=1\)

\(\Rightarrow\left\{{}\begin{matrix}a-2b=1\\2a-b-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=\dfrac{-1}{3}\end{matrix}\right.\)

\(\Rightarrow |z|=\sqrt{a^2+b^2}=\frac{\sqrt{2}}{3}\). Đáp án D.

Bài 31: Để \(z.z'\in\mathbb{R}\) nghĩa là phần ảo của nó phải bằng $0$

Khai triển:

\(z.z'=(m+3i)[2-(m+1)i]=A+i(6-m^2-m)\) với \(A\in\mathbb{R}\)

Lưu ý: Bài toán muốn thỏa điều kiện phần ảo bằng 0 thì ta sẽ chỉ quan tâm đến phần ảo, do đó mình mới viết gọn hết các phần thực thành 1 cụm $A$

Phần ảo bằng \(0\Leftrightarrow 6-m^2-m=0\Leftrightarrow m=2\) hoặc \(m=-3\)

Đáp án D.

Bình luận (0)
AH
6 tháng 3 2017 lúc 8:46

Câu 33: Tương tự như câu 30

Đặt \(z=a+bi(a,b\in\mathbb{R})\Rightarrow\overline{z}=a-bi\)

Khi đó \(z+2\overline{z}=2-4i\Rightarrow a+bi+2(a-bi)=2-4i\)

\(\Leftrightarrow 3a-bi=2-4i\Rightarrow \)

\(\Rightarrow \left\{\begin{matrix} 2a=3\\ b=4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{2}{3}\\ b=4\end{matrix}\right.\Rightarrow |z|=\sqrt{a^2+b^2}=\frac{2\sqrt{37}}{3}\)

Đáp án C

Câu 34:

Ta có \((iz)(\overline{z}-2+3i)=0\Leftrightarrow \)\(\left[{}\begin{matrix}iz=0\\\overline{z}-2+3i=0\end{matrix}\right.\)

Ở TH1 vì \(i\neq 0\Rightarrow z=0\)

Ở TH2: \(\overline{z}-2+3i=0\Leftrightarrow \overline{z}=2-3i\rightarrow z=2+3i\)

(Nhớ rằng nếu số phức $z$ có dạng $a+bi$ thì \(|z|=a-bi\) và ngược lại)

Đáp án A.

Mình nghĩ phần số phức là phần đơn giản nhất trong chương trình 12 vì nó giống như kiểu giải PT thông thường thôi. Thiết nghĩ bạn nên ôn thật chắc kiến thức lý thuyết cơ bản trong sgk. Cam đoan rằng khi bạn nắm chắc kiến thức lý thuyết về số phức thì sẽ cảm thấy nó dễ.

Bình luận (1)

Các câu hỏi tương tự
LL
Xem chi tiết
AB
Xem chi tiết
NV
Xem chi tiết
NV
Xem chi tiết
SC
Xem chi tiết
NU
Xem chi tiết
HK
KM
Xem chi tiết
DN
Xem chi tiết