Chương 4: GIỚI HẠN

DN

giúp em bài này đc không ạ???

Cho \(x\underrightarrow{lim}1\frac{\sqrt{3x-2}+\sqrt[3]{3x+5}+ax+b}{x^2-2x+1}=c\) \(\left(a,b,c\varepsilon R\right)\)

Tính giá trị biểu thức \(P=\frac{a+b}{c}\)

A \(-\frac{37}{96}\) B. \(P=\frac{96}{37}\) C. \(P=-\frac{96}{37}\) D. \(P=\frac{37}{96}\)

NL
27 tháng 4 2019 lúc 17:37

Để giá trị của giới hạn là một số thực xác định thì biểu thức trên tử số ít nhất phải có nghiệm kép \(x=1\)

Đặt \(f\left(x\right)=\sqrt{3x-2}+\sqrt[3]{3x+5}+ax+b\)

\(f\left(1\right)=a+b+3=0\Rightarrow b=-3-a\)

Thay ngược lại vào \(f\left(x\right)\)

\(f\left(x\right)=\sqrt{3x-2}+\sqrt[3]{3x+5}+ax-3-a\)

\(f\left(x\right)=\frac{3\left(x-1\right)}{\sqrt{3x-2}+1}+\frac{3\left(x-1\right)}{\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4}+a\left(x-1\right)\)

\(f\left(x\right)=\left(x-1\right)\left(\frac{3}{\sqrt{3x-2}+1}+\frac{3}{\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4}+a\right)\)

\(\Rightarrow\) Để \(f\left(x\right)\) có nghiệm kép \(x=1\) thì

\(g\left(x\right)=\frac{3}{\sqrt{3x-2}+1}+\frac{3}{\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4}+a\) có ít nhất một nghiệm \(x=1\)

\(g\left(1\right)=\frac{3}{2}+\frac{3}{4+4+4}+a=0\Rightarrow a=-\frac{7}{4}\Rightarrow b=-\frac{5}{4}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\frac{\sqrt{3x-2}+\sqrt[3]{3x+5}-\frac{7}{4}x-\frac{5}{4}}{x^2-2x+1}=-\frac{37}{32}\)

\(\Rightarrow P=\frac{-\frac{7}{4}-\frac{5}{4}}{-\frac{37}{32}}=\frac{96}{37}\)

Bình luận (6)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
CC
Xem chi tiết
DN
Xem chi tiết
NH
Xem chi tiết
CA
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết