giup e cau 7 a
cho 2 đường tròn ( O ; R ) và ( O1 ; R1 ) cắt nhau tại 2 điểm A và B . Trên đường thẳng AB , lấy điểm C ở ngoài 2 đường tròn và kẻ 2 tiếp tuyến CE , CF đến 2 đường tròn đó ( E , F là các tiếp điểm ) . Chứng minh rằng CE = CF
Cho hình chữ nhật ABCD. Gọi E là hình chiếu cuarB trên AC, F và G là trung điểm của AE và CD. Chứng minh BF vuông góc với FG
cho tứ giác ABCD . Gọi M , N lần luợt là trung điểm của AC và BD . Chứng minh rằng : AB2 + BC2 + CD2 +DA2 = AC2 + BD2 + 4MN2
Cho tam giác ABC đều cạnh a. Tìm tập hợp điểm M thoả: MA^2+MB^2+MC^2= 2a^2
cho hình bình hành ABCD . Tìm tập hợp các điểm M sao cho : MA2 + MB2 + MC2 + MD2 = k2 , trong đó k là một số cho trước
Chứng minh rằng AB vuông góc với CD khi và chỉ khi AC2 - AD2 = BC2 - BD2
cho tam giác ABC . Chứng minh rằng : a) cot A = b2 + c2 - a2 / 4S ( S là diện tích tam giác ABC ) ; b) cot A + cot B + cot C = a2 + b2 + c2 / 4S
/ nghĩa là phân số