sai kìa \(\frac{AI}{DI}=\frac{AB}{BD}\Rightarrow\frac{AI}{AI+DI}=\frac{AB}{AB+BD}\)
sai kìa \(\frac{AI}{DI}=\frac{AB}{BD}\Rightarrow\frac{AI}{AI+DI}=\frac{AB}{AB+BD}\)
Cho hình chữ nhật ABCD, AB= 2BC. Trên cạnh BC lấy điểm I , tia AI cắt đường thẳng CD ở K.. CMR:
\(\frac{1}{AB^2}=\frac{1}{AI^2}+\frac{1}{4AK^2}\)
giúp vs nha mk đang cần gấp please !!!!!!!
cho hình bình hành ABCD có DC=2Ad., từ trung điểm I của cạnh CD vẽ HI vuông góc với AB ( H thuộc AB). Gọi E là giao điểm AI và DH. CMR:
a) \(\frac{DE}{HE}=\frac{DA}{HA}\)
b)\(\frac{1}{IH^2}=\frac{1}{IA^2}+\frac{1}{IB^2}\)
Cho tam giác ABC, Đường phân giác BD cắt trung tuyến AM tại I, đường thẳng CI cắt AB tại N. Chứng minh
\(\frac{AB}{AN}+1=\frac{2AM}{AI}\)
cho tam giác ABC, AB>AC , lấy điểm M,N lần lượt trên cạnh AB,AC sao cho \(AM=\frac{1}{3}AB,AN=\frac{1}{3}AC\) . gọi O là giao điểm của BN và CM , F là giao điểm của AO và BC , vẽ \(AI\perp BC\) tại I , \(OL\perp BC\) tại L , \(BD\perp FA\) tại D , \(CE\perp FA\) tại E.
So sánh CE với BD , OL với IA , OA với FO
Cho tứ giác ABCD nội tiếp đường tròn (O). Chứng minh
\(\frac{AC}{BD}=\frac{BC\cdot CD+AB\cdot BD}{BC\cdot BA+DC\cdot DA}\)
Cho hình vuông ABCD (AB=a) , M là một điểm bất kỳ trên cạnh BC . Tia Ax vuông góc với AM cắt đường thẳng CD tại K . Gọi I là trung điểm cảu đoạn thẳng MK. Tia AI cắt đường thẳng CD tại E . Đường thẳng qua M song song với AB cắt AI tại N
1, Tứ giác MNKE là hình gì? Chứng minh
2, Cmr :\(AK^2=KC.KE\)
3, Cmr : Khi điểm M di chuyển trên cạnh Bc thì tam giác CME luôn có chu vi không đổi
4, Tia AM cắt đường thẳng CD tại G. Cmr : \(\frac{1}{AM^2}+\frac{1}{AG^2}\) không phụ thuộc vào vị trí của điểm M
ai đó giải hộ mk 3 bài này vs
Giải phương trình:
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
Cho tam giác ABC ( AB<AC) ngoại tiếp đường tròn (O;R) . đường tròn (O;R) tiếp xúc với các cạnh BC,AB lần lượt tại D,N . kẻ đường kính DI của đường tròn (O;R) . tiếp tuyến của đường tròn (O;R) tại I cắt các cạnh AB,AC lần lượt tại E,F
1) Chứng minh tam giác BOE vuông và EI.BD=FI.CD=R2
2) Gọi P, K lần lượt là trung điểm của các đoạn thẳng BC,AD ; Q là giáo điểm cảu BC và AI . Chứng minh AQ=2KP
3) Gọi A1 là giao điểm của AO với cạnh BC , B1 là giao điểm của BO với cạnh AC , C1 là giao điểm của CO với cạnh AB và (O1;R1) là đường tròn ngoại tiếp tam giác ABC
Chứng minh : \(\frac{1}{ÂA1}+\frac{1}{BB1}+\frac{1}{CC1}< \frac{2}{R1-OO1}\)
cho tam giác abc và điểm m tuỳ ý các đoạn thẳng AM,BM,CM cắt các cạnh BC,AC,AB tại D,E,F. CMR