Violympic toán 9

H24

giải pt : \(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=4\)

DH
27 tháng 9 2019 lúc 18:07

C1:\(\sqrt{x+\sqrt{x-4}}+\sqrt{x-\sqrt{x-4}}=0\)

\(\Rightarrow\sqrt{x-4+\sqrt{x-4}+4}+\sqrt{x-4-\sqrt{x-4}+4}=0\)

\(\Rightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=0\)

\(\Rightarrow\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-4}+2+\sqrt{x-4}-2=0\\\sqrt{x-4}+2+2-\sqrt{x-4}=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2\sqrt{x-4}=0\Rightarrow\sqrt{x-4}=0\Rightarrow x-4=0\Rightarrow x=4\\4=0\Rightarrow vôlí\end{matrix}\right.\)

\(\Rightarrow x=4\)

Bình luận (2)
LD
27 tháng 9 2019 lúc 17:14

Hỏi đáp Toán

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
MD
Xem chi tiết
VT
Xem chi tiết
MT
Xem chi tiết
NH
Xem chi tiết
TV
Xem chi tiết