Violympic toán 9

HC

Giải Pt: \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)

DT
2 tháng 11 2018 lúc 21:27

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)(dkxd

\(x\ge1\) )

\(\Leftrightarrow\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}\)

\(+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=x-1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

\(=x-1\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=x-1\)

\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=x-1\)

TH1: \(\sqrt{x-1}\ge1\Leftrightarrow x-1\ge1\Leftrightarrow x\ge2\)(thỏa mãn điều kiện xác định )

\(\Leftrightarrow\sqrt{x-1}+1+\sqrt{x-1}-1=x-1\)

\(\Leftrightarrow2\sqrt{x-1}=x-1\)\(x\ge2\Leftrightarrow x-1>0\)

\(\Rightarrow4\left(x-1\right)=\left(x-1\right)^2\)

\(\Leftrightarrow x-1=4\Leftrightarrow x=5\left(tm\right)\)

TH2:\(\sqrt{x-1}< 1\Leftrightarrow x-1< 1\Leftrightarrow x< 2\) kết hợp với điều kiện thì\(1\le x< 2\)

\(\Leftrightarrow\sqrt{x-1}+1+1-\sqrt{x-1}=x-1\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(ktm\right)\)

Vậy S={5}

Bình luận (0)

Các câu hỏi tương tự
MD
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
HN
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết