Chương I - Căn bậc hai. Căn bậc ba

LE

Giải PT:

a) \(\sqrt{x+1}-\sqrt{x-2}=1\)

b) \(x^2-\sqrt{x^2-2}=4\)

c) \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

NL
1 tháng 9 2020 lúc 16:06

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{x+1}=1+\sqrt{x-2}\)

\(\Leftrightarrow x+1=1+x-2+2\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{x-2}=1\)

\(\Leftrightarrow x=3\)

b/ ĐKXĐ: \(x^2\ge2\)

Đặt \(\sqrt{x^2-2}=t\ge0\Rightarrow x^2=t^2+2\)

Pt trở thành: \(t^2+2-t=4\)

\(\Leftrightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-2}=2\Leftrightarrow x^2=6\Rightarrow x=\pm\sqrt{6}\)

Bình luận (0)
NL
1 tháng 9 2020 lúc 16:08

c/

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=5-\left(x+1\right)^2\)

Do \(\left(x+1\right)^2\ge0\) ;\(\forall x\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{3\left(x+1\right)^2+4}\ge\sqrt{0+4}=2\\\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{0+9}=3\end{matrix}\right.\)

\(\Rightarrow VT\ge5\)

\(VP=5-\left(x+1\right)^2\le5\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
CA
Xem chi tiết
DL
Xem chi tiết
NS
Xem chi tiết
PD
Xem chi tiết
HG
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
NK
Xem chi tiết