Ôn tập cuối năm phần số học

LN

Giải phương trình:

(x2-1)3+(x2+2)3+(2x-1)3+(3x+3)(2x-1)(1-x)(x2+2)=0

AH
15 tháng 5 2021 lúc 22:00

Lời giải:

PT $\Leftrightarrow (x^2-1)^3+(x^2+2)^3+(2x-1)^3-3(x^2-1)(x^2+2)(2x-1)=0$

Đặt $x^2-1=a; x^2+2=b; 2x-1=c$ thì pt trở thành:
$a^3+b^3+c^3-3abc=0$

$\Leftrightarrow (a+b)^3+c^3-3ab(a+b)-3abc=0$

$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$

$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$

$\Rightarrow a+b+c=0$ hoặc $a^2+b^2+c^2-ab-bc-ac=0$

Nếu $a+b+c=0$

$\Leftrightarrow x^2-1+x^2+2+2x-1=0$

$\Leftrightarrow 2x^2+2x=0$

$\Rightarrow x=0$ hoặc $x=-1$
Nếu $a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

$\Rightarrow a-b=b-c=c-a=0$ (dễ CM)

$\Leftrightarrow a=b=c$

$\Leftrightarrow x^2-1=x^2+2=2x-1$ (vô lý)

Vậy..........

Bình luận (2)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
GA
Xem chi tiết
FS
Xem chi tiết
AL
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết