Ôn tập: Bất phương trình bậc nhất một ẩn

TN

Giải phương trình:

a) \(\dfrac{2x+3}{-4}\ge\dfrac{4-x}{-3}\)

b) |x+2| = 2x - 10

TL
12 tháng 5 2021 lúc 21:22

a) `(2x+3)/(-4) ≥ (4-x)/(-3)`

`<=> (2x+3)/4 ≤ (x-4)/3`

`<=> 3(2x+3) ≤ 4(x-4)`

`<=> 6x+9 ≤ 4x-16`

`<=> 2x ≤ -25`

`<=> x ≤ -25/2`

b) `|x+2| = 2x-10`

TH1: `x+2>=0 <=> x >=-2`

`x+2=2x-10`

`<=>x=12`

TH2: `x<=-2`

`-x-2=2x-10`

`<=>x=8/3 (L)`

Vậy `x=12`.

 

Bình luận (3)
DD
12 tháng 5 2021 lúc 21:28

a,

⇔ -3(2x + 3) ≥ -4(4 – x )

⇔ -6x – 9 ≥ -16 + 4x

⇔ 16 – 9 ≥ 4x + 6x )

⇔ 7 ≥ 10x

⇔ 0,7 ≥ x hay x ≤ 0,7

Vậy bất phương trình có nghiệm x ≤ 0,7.

b,

ta có :/x+2/=x+2 khi  x+2 >= 0 hay x >= -2
          /x+2/=-( X+2) =-x-2 khi -x-2<0 hay x<-2 
 để giải pt  ta quy về giải hai pt sau :
* x+2 = 2x-10                                               * -x-2=2x-10
<=>-x=-12                                                  <=>-3x = -8 
<=> x =12 ( nhận )                                     <=> x= 8/3 ( nhận )
 vậy pt (1) có TN là S ={12; -8/3}

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
SN
Xem chi tiết
HN
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
2S
Xem chi tiết
TK
Xem chi tiết
TD
Xem chi tiết
HT
Xem chi tiết