Rút gọn:
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right).\sqrt{9-x^2}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right).\sqrt{x^2-6x+8}}\)
\(C=\frac{\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
Giải các phương trình sau:
a. \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)
b. \(\sqrt{\left(2x-1\right)^2}=4\)
c. \(\sqrt{\left(2x+1\right)^2}=3x-5\)
d. \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
1) Giải phương trình:
a)\(\sqrt{3x+1}=2x+4\)
b)\(\sqrt{\left(x-3\right)^2}=2x^2+x-3\)
c)\(\frac{3x+\sqrt{5}}{\sqrt{2}}-\sqrt{8}=0\)
d)\(\frac{x^2-\sqrt{8}}{\sqrt{2}}+\sqrt{18}=0\)
e)\(2\sqrt{x}=3\sqrt{x}-2\)
Giúp mk vs mk đang cần gấp
1) Thực hiện phép tính
\(\sqrt{50}-3\sqrt{8}+\sqrt{32}\)
2) Giải các phương trình sau:
a)\(\sqrt{x^2-4x+4}=1\)
b)\(\sqrt{x^2-3x}-\sqrt{x-3}=0\)
Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
Giải phương trình vô tỉ:
1/ \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+15}\)
2/ \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x+1\right)}-\sqrt{x^2-3x+4}\)
3/ \(\sqrt[5]{x-1}+\sqrt[3]{x+8}=-x^3+1\)
4/ \(\sqrt{5-x^6}+\sqrt[3]{3x^4-2}=1\)
Giải các phương trình sau:
a. \(\sqrt{\left(3x-1\right)^2}=5\)
b. \(\sqrt{4x^2-4x+1}=3\)
c. \(\sqrt{x^2-6x+9}+3x=4\)
d. \(3\sqrt{9x+9}-\sqrt{36x+36}+2\sqrt{4x+4}=12\)
- Cho a,b,c là các số thực dương thoả mãn \(a\sqrt{32\left(b^2+c^2\right)}+\left(b+c\right)^2=12\)
Chứng minh : \(\frac{a^3}{b+3\sqrt{bc}}+\frac{b^3}{c+3\sqrt{ca}}+\frac{c^3}{a+3\sqrt{ca}}\ge\frac{3}{4}\)
- Giải phương trình sau: \(2x^3-x^2+\sqrt[3]{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}\)
Giải các phương trình sau;
a) \(\sqrt{3}.x-2=x \)
b)\(\sqrt{3x-2}=2- \sqrt{3} \)
c)4\(\sqrt{x+1}=x^{2}-5x+14 \)