Chương I - Căn bậc hai. Căn bậc ba

TT

- Cho a,b,c là các số thực dương thoả mãn \(a\sqrt{32\left(b^2+c^2\right)}+\left(b+c\right)^2=12\)

Chứng minh : \(\frac{a^3}{b+3\sqrt{bc}}+\frac{b^3}{c+3\sqrt{ca}}+\frac{c^3}{a+3\sqrt{ca}}\ge\frac{3}{4}\)

- Giải phương trình sau: \(2x^3-x^2+\sqrt[3]{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}\)

HP
11 tháng 3 2020 lúc 21:26

Ta có : \(a\sqrt{32\left(b^2+c^2\right)}=2.2a\sqrt{2\left(b^2+c^2\right)}\le4a^2+2\left(b^2+c^2\right)\)

\(\left(b+c\right)^2\le2\left(b^2+c^2\right)\)

\(\Rightarrow12\le4\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2\ge3\)

Ngoài ra \(a\sqrt{\left(16+16\right)\left(b^2+b^2\right)}\ge a\left(4a+4b\right)\)

\(\left(b+c\right)^2\ge4bc\)

\(\Rightarrow ab+bc+ac\le3\)

\(VT=\frac{a^4}{ab+3a\sqrt{bc}}+\frac{b^4}{bc+3b\sqrt{ca}}+\frac{c^4}{ac+3c\sqrt{ba}}\)

\(\ge\frac{a^4}{ab+\frac{3}{2}\left(a^2+bc\right)}+\frac{b^4}{bc+\frac{3}{2}\left(b^2+ac\right)}+\frac{c^4}{ac+\frac{3}{2}\left(c^2+ab\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{5}{2}\left(ab+bc+ac\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{15}{2}}\)

Xét VT \(\ge\frac{3}{4}\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\frac{9}{8}\left(a^2+b^2+c^2\right)+\frac{45}{8}\)

\(\Leftrightarrow\left(a^2+b^2+c^2-3\right)+\left(a^2+b^2+c^2+\frac{15}{8}\right)\ge0\) ( luôn đúng với \(a^2+b^2+c^2\ge3\) )

\(\Rightarrowđpcm\)

Dấu " = " xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LD
Xem chi tiết
AV
Xem chi tiết
AD
Xem chi tiết
DQ
Xem chi tiết
LH
Xem chi tiết
NA
Xem chi tiết
HP
Xem chi tiết
CN
Xem chi tiết
AD
Xem chi tiết