\(\sqrt{4x-1}+\sqrt{4x^2-1}=1\)
\(\Leftrightarrow\sqrt{4x-1}-1+\sqrt{4x^2-1}=0\)
\(\Leftrightarrow\dfrac{4x-1-1}{\sqrt{4x-1}+1}+\sqrt{4x^2-1}=0\)
\(\Leftrightarrow\dfrac{2\left(2x-1\right)}{\sqrt{4x-1}+1}+\sqrt{\left(2x-1\right)\left(2x+1\right)}=0\)
\(\Leftrightarrow\left(\dfrac{2\sqrt{2x-1}}{\sqrt{4x-1}+1}+\sqrt{2x+1}\right)\sqrt{2x-1}=0\)
\(\Rightarrow x=\dfrac{1}{2}\) (n)
Vậy phương trình có 1 nghiệm duy nhất . . .