Violympic toán 9

AJ

Giai phương trình: \(\frac{2}{x^2+17}+\frac{1}{2x^2+7}=\frac{2}{1+\sqrt{\left(x^2+3\right)\left(x^2+15\right)}}\)

NL
20 tháng 11 2019 lúc 19:49

Ta dễ dàng chứng minh BĐT sau:

Với \(a;b>1\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

Thật vậy, BĐT tương đương: \(\frac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow-a^2-b^2+a^3b+ab^3+2ab-2a^2b^2\ge0\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a-b\right)^2\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

Áp dụng vào bài toán:

\(\frac{1}{1+\left(\sqrt{\frac{x^2+15}{2}}\right)^2}+\frac{1}{1+\left(\sqrt{2\left(x^2+3\right)}\right)^2}\ge\frac{2}{1+\sqrt{\left(x^2+3\right)\left(x^2+16\right)}}\)

Dấu "=" xảy ra khi và chỉ khi:

\(\frac{x^2+15}{2}=2\left(x^2+3\right)\Leftrightarrow x^2=1\Rightarrow x=\pm1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PQ
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
BL
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
AJ
Xem chi tiết
KZ
Xem chi tiết