Ôn tập cuối năm phần số học

TN

Giải phương trình:

\(\dfrac{x+4}{x^2-3x+2}-\dfrac{x+1}{x^2-4x+3}=\dfrac{2x+5}{x^2-4x+3}\)

LG
7 tháng 4 2018 lúc 20:21

ĐKXĐ: \(\left\{{}\begin{matrix}x^2-3x+2\ne0\\x^2-4x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne3\end{matrix}\right.\)

\(\dfrac{x+4}{x^2-3x+2}-\dfrac{x+1}{x^2-4x+3}=\dfrac{2x+5}{x^2-4x+3}\)

\(\Leftrightarrow\dfrac{x+4}{x^2-3x+2}-\dfrac{x+1}{x^2-4x+3}-\dfrac{2x+5}{x^2-4x+3}=0\)

\(\Leftrightarrow\dfrac{x+4}{x^2-2x-x+2}-\dfrac{3x+6}{x^2-3x-x-3}=0\)

\(\Leftrightarrow\dfrac{x+4}{\left(x-2\right)\left(x-1\right)}-\dfrac{3x+6}{\left(x-3\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}-\dfrac{3\left(x+2\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+x-12-3x^2+12}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{-2x^2+x}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{-x\left(2x-1\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{0;\dfrac{1}{2}\right\}\)

Bình luận (2)

Các câu hỏi tương tự
2S
Xem chi tiết
SK
Xem chi tiết
AH
Xem chi tiết
AH
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
TH
Xem chi tiết
AL
Xem chi tiết
ON
Xem chi tiết