x2 +2x -3 = (x-1)(x+3)
vậy msc = (x-1)(x+3) bn thay vào r giải k có j là khó cả
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
x2 +2x -3 = (x-1)(x+3)
vậy msc = (x-1)(x+3) bn thay vào r giải k có j là khó cả
Giải các phương trình sau :
a)\(\dfrac{5x+2}{6}\)\(-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
b)\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
c)\(2x^3 +6x^2=x^2+3x\)
d)\(\left|x-4\right|+3x=5\)
Giải các phương trình :
a) \(\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)
b) \(\dfrac{3\left(2x-1\right)}{4}-\dfrac{3x+1}{10}+1=\dfrac{2\left(3x+2\right)}{5}\)
c) \(\dfrac{x+2}{3}+\dfrac{3\left(2x-1\right)}{4}-\dfrac{5x-3}{6}=x+\dfrac{5}{12}\)
Giải các bất phương trình sau rồi biểu diễn tập nghiệm của chúng trên trục số:
1) \(\left(x+3\right)^2-3\left(2x-1\right)>x\left(x-4\right)\)
2) \(1+\dfrac{x+1}{3}>\dfrac{2x-1}{6}-2\)
3) \(x-\dfrac{2x-7}{4}< \dfrac{2x}{3}-\dfrac{2x+3}{2}-1\)
4) \(\dfrac{2x+1}{x-3}\le2\)
5) \(\dfrac{12-3x}{2x+6}>3\)
6) \(x^2+3x-4\le0\)
7) \(\dfrac{5}{5x-1}< \dfrac{-3}{5-3x}\)
8) \(\left(2x-1\right)\left(3-2x\right)\left(1-x\right)>0\)
Giải các phương trình :
a) \(3x^2+2x-1=0\)
b) \(\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=3\dfrac{1}{5}\)
Bài 2: Giải các phương trình sau:
a. \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
b. \(\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)
c. \(x-\dfrac{5x-1}{6}=\dfrac{8-3x}{4}\)
d. \(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)
Bài 2: Giải các phương trình sau:
a. \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
b. \(\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)
c. \(x-\dfrac{5x-1}{6}=\dfrac{8-3x}{4}\)
d. \(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)
Giải phương trình:
\(\dfrac{x+4}{x^2-3x+2}-\dfrac{x+1}{x^2-4x+3}=\dfrac{2x+5}{x^2-4x+3}\)
\(\dfrac{2x+5}{x+3}\) + 1 = \(\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
Đề 2 : 1. Giai bất phương trình
a. 3x-1= x-5
b. \(\dfrac{2x-1}{3}\)+\(\dfrac{3x-5}{4}\)=\(\dfrac{x-1}{5}\)
c. (2x-6)( x+20) = 0
d. \(\dfrac{x-3}{x+3}\)+\(\dfrac{x+3}{x-3}\)= \(\dfrac{2x\left(x+1\right)}{x^2-9}\)