Chương I - Căn bậc hai. Căn bậc ba

CN

Giai phuong trinh: \(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)

MD
8 tháng 7 2017 lúc 14:15

ĐK: \(0< x\le4\)

Đặt \(\sqrt{2+\sqrt{x}}=a\left(a>0\right)\) ; \(\sqrt{2-\sqrt{x}}=b\left(b\ge0\right)\)

=> \(a^2+b^2=2+\sqrt{x}+2-\sqrt{x}=4\) (1)

Ta có: \(\dfrac{a^2}{\sqrt{2}+a}+\dfrac{b^2}{\sqrt{2}-b}=\sqrt{2}\)

<=> \(\dfrac{a^2.\sqrt{2}-a^2b+b^2.\sqrt{2}+ab^2}{2+\sqrt{2}\left(a-b\right)-ab}=\sqrt{2}\)

<=> \(\left(a^2+b^2\right)\sqrt{2}+ab\left(b-a\right)=2\sqrt{2}+2\left(a-b\right)-ab.\sqrt{2}\)

<=> \(4\sqrt{2}+ab\left(b-a\right)=2\sqrt{2}+2\left(a-b\right)-ab.\sqrt{2}\) ( Theo 1)

<=> \(\left(a-b\right)\left(2+ab\right)=2\sqrt{2}+ab.\sqrt{2}\)

<=> \(\left(a-b-\sqrt{2}\right)\left(ab+2\right)=0\)

<=> \(\left[{}\begin{matrix}ab+2=0\\a-b-\sqrt{2}=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}ab=-2\\a-b=\sqrt{2}\end{matrix}\right.\) mà a2 + b2 = 4

Xét \(\left\{{}\begin{matrix}ab=-2\\a^2+b^2=4\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left(a-b\right)^2=8\\\left(a+b\right)^2=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}a-b=\pm\sqrt{8}\\a+b=0\end{matrix}\right.\) ( Loại vì \(a>0;b\ge0\) )

Xét \(\left\{{}\begin{matrix}a-b=\sqrt{2}\\a^2+b^2=4\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=b+\sqrt{2}\\\left(b+\sqrt{2}\right)^2+b^2=4\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}a=b+\sqrt{2}\\2b^2+2b.\sqrt{2}-2=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=b+\sqrt{2}\\b^2+b.\sqrt{2}-1=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}a=b+\sqrt{2}\\\left[{}\begin{matrix}b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\\b=\dfrac{-\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)

#Lề: Bn lấy cái đề ở đâu hay v?

Bình luận (3)
CN
31 tháng 7 2017 lúc 14:47

v cac bac e giai xong lau roi cac bac a voi lai co cach giai ko can dai nhu the dau nhe

Bình luận (1)

Các câu hỏi tương tự
TL
Xem chi tiết
NT
Xem chi tiết
HH
Xem chi tiết
VD
Xem chi tiết
TM
Xem chi tiết
LN
Xem chi tiết
TT
Xem chi tiết
AQ
Xem chi tiết
LL
Xem chi tiết